
momentuHMM: R package for analysis of
telemetry data using generalized multivariate
hidden Markov models of animal movement

Brett T. McClintock1 and Théo Michelot2

1Marine Mammal Laboratory

Alaska Fisheries Science Center

NOAA National Marine Fisheries Service

Seattle, U.S.A.

Email: brett.mcclintock@noaa.gov

2Department of Mathematics and Statistics

Dalhousie University

Halifax, Canada

Running Head: R package momentuHMM

September 12, 2024

1

Summary

1. Discrete-time hidden Markov models (HMMs) have become an immensely popular

tool for inferring latent animal behaviors from telemetry data, largely because they are

relatively fast and easy to implement when data streams are observed without error

and at regular time intervals. While movement HMMs typically rely solely on location

data, auxiliary biotelemetry and environmental data are powerful and readily-available

resources for incorporating much more behavioral realism and inferring ecological re-

lationships that would otherwise be difficult or impossible to infer from location data

alone. However, there is a paucity of generalized user-friendly software available for

implementing (multivariate) HMMs of animal movement. Furthermore, location mea-

surement error, temporal irregularity, and other forms of missing data are often perva-

sive in telemetry studies (particularly in marine systems).

2. Here we provide a guide to using an open-source R package, momentuHMM version

2.0.0, that addresses many of the deficiencies in existing software. Features for mul-

tivariate HMMs in momentuHMM (pronounced “momentum”) include: 1) tools for data

pre-processing and visualization; 2) user-specified probability distributions for an un-

limited number of data streams and latent behavior states, such as those based on

location (e.g., step length, turning angle) and auxiliary biotelemetry data (e.g., from

pressure, conductivity, heart rate, or motion sensors); 3) biased and correlated ran-

dom walk movement models, including “activity centers” associated with attractive or

repulsive forces; 4) user-specified design matrices and constraints for covariate mod-

elling of initial distribution, state transition probability, and probability distribution

parameters using linear model formulas familiar to most R users; 5) multiple impu-

tation methods that account for observation error attributable to measurement error

and temporally-irregular or missing data; 6) seamless integration of spatio-temporal

covariate raster data; 7) cosinor and spline regression formulas for cyclical (e.g., daily,

seasonal) and other complicated patterns; 8) discrete individual-level random effects on

state transition probabilities; 9) hierarchical hidden Markov models for data streams

and/or state switching at multiple time scales; 10) “recharge” models for an aggregated

physiological process associated with state switching in heterogeneous environments;

11) continuous-time animal movement models such as the (multistate) habitat-driven

Langevin diffusion; 12) model checking and selection; and 13) data simulation capa-

bilities for study design, power analyses and assessing model performance, including

2

simulation of location data subject to movement constraints (e.g. land for marine ani-

mals), temporal irregularity, and/or measurement error.

3. After providing a brief introduction to (multivariate) HMMs for telemetry data, we

demonstrate some of the capabilities of momentuHMM using real-world examples. This

brief tutorial includes workflows for data formatting, model specification, model fitting,

and diagnostics.

4. While many of the features of momentuHMM were motivated by animal movement

data, the package can be used for analyzing any type of data that is amenable to (mul-

tivariate) HMMs. Practitioners interested in additional features for momentuHMM are

encouraged to contact the authors.

Key-words animal biotelemetry, biologging, crawl, moveHMM, state-space model, state-

switching

Contents

1 Introduction 4

2 momentuHMM overview 9

2.1 Data preparation and visualization . 11

2.2 HMM specification and fitting . 14

2.3 Circular-circular regression model for the angle mean 18

2.4 Individual-level random effects . 20

2.4.1 Discrete-valued random effects 21

2.4.2 Continuous-valued random effects 21

2.5 Hierarchical hidden Markov models . 22

2.6 Random walk probability distributions 22

2.7 Recharge dynamics . 23

2.8 Multiple imputation . 24

2.9 Model visualization and diagnostics . 25

2.10 Simulation . 26

2.11 Continuous-time hidden Markov models 26

3

3 Examples 29

3.1 African elephant . 29

3.2 Northern fur seal . 34

3.3 Loggerhead turtle . 39

3.4 Grey seal . 43

3.5 Southern elephant seals . 46

3.6 Group dynamic animal movement . 54

3.7 Harbour seals . 59

3.8 Northern fulmars . 65

3.9 Pilot whales . 76

3.10 Hierarchical HMMs . 90

3.10.1 Harbor porpoise . 91

3.10.2 Garter snakes . 109

3.10.3 Atlantic cod . 122

3.10.4 Horn shark . 129

3.11 African buffalo recharge dynamics . 139

3.12 Simulating constrained movement . 149

3.13 Habitat-driven Langevin diffusion . 151

3.14 Custom plots . 159

4 Discussion 161

1 Introduction

Discrete-time hidden Markov models (HMMs) have become immensely popular for the

analysis of animal telemetry data (e.g. Morales et al. 2004; Jonsen et al. 2005; Langrock

et al. 2012; McClintock et al. 2012). In short, an HMM is a time series model composed

of a (possibly multivariate) observation process (Z1, . . . ,ZT), in which each data stream

is generated by N state-dependent probability distributions, and where the unobserv-

able (hidden) state sequence (St ∈ {1, . . . , N}, t = 1, . . . , T) is assumed to be a Markov

chain. The state sequence of the Markov chain is governed by (typically first-order)

state transition probabilities, γ
(t)
ij = Pr(St+1 = j | St = i) for i, j = 1, . . . , N , and an

initial distribution δ(0). The likelihood of an HMM can be succinctly expressed using

4

the forward algorithm:

L = δ(0)Γ(1)P(z1)Γ
(2)P(z2)Γ

(3) · · ·Γ(T−1)P(zT−1)Γ
(T)P(zT)1

N , (1)

where Γ(t) =
(
γ
(t)
ij

)
is theN×N transition probability matrix, P(zt) = diag(p1(zt), . . . , pN(zt)),

ps(zt) is the conditional probability density of Zt given St = s, and 1N is a N -vector of

ones (for a thorough introduction to HMMs see Zucchini et al. 2016).

One of the most common discrete-time animal movement HMMs for telemetry loca-

tion data is composed of two data streams, step length and turning angle (or bearing),

which are calculated for each of the T time steps from the temporally-regular obser-

vations of an animal’s position, (xt, yt), for t = 1, . . . , T + 1 (e.g. Morales et al. 2004;

Langrock et al. 2012; McClintock et al. 2012). Step length (lt) is typically calculated as

the Euclidean distance between the locations (xt, yt) and (xt+1, yt+1), while turning an-

gle (ϕt) is calculated as the change in bearing (bt = atan2(yt+1 − yt, xt+1 − xt)) between

the intervals [t− 1, t] and [t, t+1] (e.g. ϕt = 0 if bt−1 = bt). For this HMM composed of

2 data streams, zt = (lt, ϕt), and, conditional on the latent state St, independent proba-

bility distributions are typically assumed for each stream; that is, ps(zt) = ps(lt)ps(ϕt).

Some common probability distributions for the step length data stream are the gamma

or Weibull distributions, while the wrapped Cauchy or von Mises distributions are of-

ten employed for turning angle or bearing. For a fitted HMM, the Viterbi algorithm is

used to compute the most likely sequence of underlying states (Zucchini et al. 2016).

In movement HMMs, the states are often considered as proxies for animal behaviour.

While HMMs for animal movement based solely on location data are somewhat

limited in the number and type of biologically-meaningful movement behavior states

they are able to accurately identify, advances in biologging technology are now allowing

the collection of valuable auxiliary biotelemetry data (e.g., dive activity, accelerometer,

heart rate, stomach temperature), which, when combined with location data, allow for

multivariate HMMs that can incorporate much more behavioral realism and facilitate

inferences about complex ecological relationships that would otherwise be difficult or

impossible to infer from location data alone (e.g. McClintock et al. 2013; DeRuiter

et al. 2017; McClintock et al. 2017). Multivariate HMMs that utilize both location and

auxiliary biotelemetry data can facilitate the identification of additional states that go

beyond the N = 2 state approaches that are most frequently used by practitioners. For

example, the most widely used 2-state HMMs for animal movement include “encamped”

5

(or “foraging”) and “exploratory” (or “transit”) states characterized by area-restricted-

search-type movements (shorter step lengths with little to no directional persistence)

and migratory-type movements (longer step lengths with high directional persistence),

respectively (Morales et al. 2004; Jonsen et al. 2005). However, very different behav-

iors can exhibit similar horizontal trajectories. For example, for herbivores such as

North American elk (Morales et al. 2004) or central-place foragers such as harbour

seals (McClintock et al. 2013), the horizontal trajectories of “resting” and “foraging”

movements can be very difficult to distinguish. Standard 2-state HMMs based solely

on horizontal trajectory will tend to lump these behaviors together, and this could

have unintended consequences if, for example, one intends to use the estimated state

sequences to identify foraging habitat. In order to tweeze apart distinct behaviors with

similar horizontal trajectories, additional states can be informed by auxiliary informa-

tion (such as mandible accelerometer or dive data), incorporated as additional data

stream(s) in a multivariate HMM.

When data streams are observed without error and at regular time intervals, a major

advantage of HMMs is the relatively fast and efficient maximization of the likelihood

using the forward algorithm (Eq. 1). However, location measurement error is rarely

non-existent in animal-borne telemetry studies and depends on both the device and

the system under study. For example, GPS errors are typically less than 50m, but

Argos errors can exceed 10km (e.g. Costa et al. 2010). An extreme case of missing

data can arise when location data are obtained with little or no temporal regularity, as

in many marine mammal telemetry studies (e.g. Jonsen et al. 2005), such that few (if

any) observations align with the regular time steps required by discrete-time HMMs.

When explicitly accounting for uncertainty attributable to location measurement error,

temporally-irregular observations, or other forms of missing data, one must typically

fit (multivariate) HMMs using computationally-intensive (and often time-consuming)

model fitting techniques such as Markov chain Monte Carlo (Jonsen et al. 2005; Mc-

Clintock et al. 2012). However, complex analyses requiring novel statistical methods

and custom model-fitting algorithms are not practical for many practitioners.

While statisticians have been applying HMMs to telemetry data for decades, R

(R Core Team 2017) packages such as bsam (Jonsen et al. 2005), moveHMM (Michelot

et al. 2016), and swim (Whoriskey et al. 2017) have recently helped make these mod-

els of animal movement behavior more accessible to the practitioners that are actually

6

conducting telemetry studies. These advances represent important steps toward mak-

ing HMMs of animal movement more accessible, but the models that can currently

be implemented using existing software remain limited in many key respects. For ex-

ample, existing HMM software for animal movement is limited to two data streams

based solely on location data (e.g. step length and turning angle), and while moveHMM

allows for a user-specified number of latent behavioral states (bsam and swim are lim-

ited to N = 2 states), it is typically difficult to identify >2 biologically-meaningful

behavior states from only 2 data streams (e.g. Morales et al. 2004; Beyer et al. 2013;

McClintock et al. 2014). Both moveHMM and swim are designed for temporally-regular

(or linearly-interpolated) location data with negligible measurement error, but the re-

alities of animal-borne telemetry often yield temporally-irregular location data subject

to error (particularly in aquatic environments). Other notable deficiencies of exist-

ing software include limited abilities to incorporate spatio-temporal environmental or

individual covariates on parameters, biased (or directed) movements in response to at-

tractive or repulsive forces (e.g. McClintock et al. 2012; Langrock et al. 2014), cyclical

(e.g. daily, seasonal) and other more complicated behavioral patterns, or constraints

on parameters.

To address these deficiencies in existing software, we developed a user-friendly R

package, momentuHMM (Maximum likelihood analysis Of animal MovemENT behavior

Using multivariate Hidden Markov Models), intended for practitioners wishing to im-

plement more flexible and realistic (multivariate) HMM analyses of animal movement

while accounting for common challenges associated with telemetry data (McClintock

& Michelot 2018). Features for multivariate HMM analyses in momentuHMM include: 1)

tools for data pre-processing and visualization; 2) user-specified probability distribu-

tions for an unlimited number of data streams and latent behavior states; 3) biased

and correlated random walk movement models, including “activity centers” associated

with attractive or repulsive forces (e.g. McClintock et al. 2012); 4) user-specified de-

sign matrices and constraints for covariate modelling of state transition probability

and probability distribution parameters using linear model formulas familiar to most R

users; 5) multiple imputation methods that account for observation error attributable

to measurement error and temporally-irregular or missing data (Hooten et al. 2017;

McClintock 2017); 6) seamless integration of spatio-temporal environmental covariate

data (e.g., wind direction, forest cover, sea ice concentration) using the raster package

7

(Hijmans 2016b); 7) cosinor (e.g. Cornelissen 2014) and spline regression formulas for

cyclical and other complicated behavioral patterns; 8) discrete individual-level random

effects on state transition probabilities (e.g. DeRuiter et al. 2017); 9) hierarchical hidden

Markov models (e.g. Leos-Barajas et al. 2017; Adam et al. 2019) for data streams and/or

state switching at multiple time scales; 10) “recharge” models for an aggregated physi-

ological process associated with state switching in heterogeneous environments (Hooten

et al. 2019); 11) model checking and selection; and 12) data simulation capabilities for

study design, power analyses and assessing model performance, including simulation of

location data subject to movement constraints (e.g. land for marine animals), temporal

irregularity, and/or measurement error.

In the following tutorial, we demonstrate some of the capabilities of momentuHMM

using real-world examples, including an example of periodic cycles in African elephant

movement, a 3-state (“resting”, “foraging”, “transit”) northern fur seal example in-

corporating auxiliary dive activity data (McClintock et al. 2014), a loggerhead turtle

example relating “foraging” and “transit” movements to ocean surface currents, a 5-

state grey seal example incorporating biased movements toward haul-out and foraging

locations (McClintock et al. 2012), a 4-state (“outbound”, “searching”, “foraging”, “in-

bound”) southern elephant seal example with biased movements toward and away from

a colony (Michelot et al. 2017), a 3-state (“resting”, “foraging”, “transit”) harbour

seal example using population-level constraints on movement parameters (McClintock

et al. 2013), a 6-state northern fulmar example incorporating biased movements relative

to both static (i.e. colony) and dynamic (i.e. fishing vessels) activity centers (Pirotta

et al. 2018), a 4-state long-finned pilot whale example including individual-level random

effects on state transition probabilities (Isojunno et al. 2017), and hierarchical HMMs

fitted to harbor porpoise, garter snake, Atlantic cod, and horn shark data (Leos-Barajas

et al. 2017; Adam et al. 2019), and a recharge dynamics model for African buffalo move-

ments in a heterogeneous environment (Hooten et al. 2019). Using simulated data, we

also demonstrate how the group dynamic model of Langrock et al. (2014) can be imple-

mented using momentuHMM. Finally, we demonstrate how to simulate movement subject

to barriers or other constraints (e.g. land for marine animals) using potential functions

(e.g. Brillinger et al. 2012). This brief tutorial includes workflows for data format-

ting, model specification, model fitting, and diagnostics. While many of the features

of momentuHMM were motivated by animal movement data, the package can be used for

8

analyzing any type of data that is amenable to (multivariate) HMMs. Additional infor-

mation, including help files, data, examples, and package usage is available by download-

ing the momentuHMM package from CRAN (https://cran.r-project.org) or GitHub

(https://github.com/bmcclintock/momentuHMM). We ask that users please submit

bug reports, questions, and other issues to GitHub. This article describes momentuHMM

version 2.0.0.

2 momentuHMM overview

Before delving into some of the finer details, we will first provide an overview of the

main features and functions of momentuHMM (pronounced “momentum”). While space is

limited in this tutorial, further details on implementation can be found in the package’s

documentation and vignette. The workhorse functions of momentuHMM are listed in

Table 1. Usage of several of these functions (e.g. fitHMM, prepData, simData) is

deliberately very similar to equivalent functions in moveHMM (Michelot et al. 2016) , but

the momentuHMM arguments for these functions have been generalized and expanded to

accommodate a more flexible framework for data pre-processing, model specification,

parameterization, and simulation. R users already familiar with moveHMM will therefore

likely find it easy to immediately begin using momentuHMM.

One of the key features of momentuHMM is the ability to include an unlimited number

of HMM data streams (e.g. step length, turning angle, dive activity, heart rate) arising

from a broad range of commonly used probability distributions (e.g. beta, categorical,

gamma, normal, multivariate normal, Poisson, von Mises, Weibull), including (multi-

variate) normal random walks (section 2.6) that can be particularly useful for modeling

positions directly (instead of step lengths and turning angles). Any of the parameters of

the probability distributions used for the observed data can be modelled as a function of

environmental and individual covariates using link functions (Tables 2 and 3). For any

given “natural scale” (or “real scale”) probability distribution parameter θ, all of the

link functions (g) in momentuHMM are of the general form g(θ) = Xθβθ, where Xθ is the

T ×K design matrix (composed of K covariates) and βθ is the correponding K-vector

of “working scale” (or “beta scale”) parameters for θ. For example, suppose step length

is assumed to have a gamma distribution, lt | St = s ∼ gamma(µs, σs). In momentuHMM,

the natural scale parameters for the gamma distribution are the (state-dependent) step

9

https://cran.r-project.org
https://github.com/bmcclintock/momentuHMM

Table 1. Workhorse functions for the R package momentuHMM.

Function Description

crawlMerge Merge crawlWrap output with additional data streams or covariates
crawlWrap Fit crawl models and predict temporally-regular locations
fitHMM Fit a (multivariate) HMM to the data
MIfitHMM Fit (multivariate) HMMs to multiple imputation data
MIpool Pool momentuHMM model results across multiple imputations
plot.crwData Plot crawlWrap output
plot.miSum Plot summaries of multiple imputation momentuHMM models
plot.momentuHMM Plot summaries of momentuHMM models
plot.momentuHMMData Plot summaries of selected data streams and covariates
plotPR Plot time series, qq-plots and sample ACFs of pseudo-residuals
plotSat Plot locations on satellite image
plotSpatialCov Plot locations on raster image
plotStates Plot the (Viterbi-)decoded states and state probabilities
plotStationary Plot stationary state probabilities
prepData Pre-process data streams and covariates
pseudoRes Calculate pseudo-residuals for momentuHMM models
simData Simulate data from a (multivariate) HMM
simHierData Simulate data from a (multivariate) hierarchical HMM
stateProbs State probabilities for each time step
viterbi Most likely state sequence (using the Viterbi algorithm)

10

length mean (µs > 0) and standard deviation (σs > 0). Because both of these pa-

rameters must be positive, the log link function is a natural choice for modelling these

parameters as a function of covariates, e.g., log(µ) = Xµβµ and log(σ) = Xσβσ.

The state transition probabilities (Γ(t)) and initial distribution (δ(0)) can also be

modelled as functions of covariates, using a multinomial logit link, as described e.g. by

Michelot et al. (2016). Permissable R classes for covariates include numeric, integer,

or factor. Factors can be particularly useful for specifying models with individual-

or group-level (e.g. sex or age class) effects on state transition and probability dis-

tribution parameters. Spatio-temporal covariates can also be of classes rasterLayer,

rasterStack, or rasterBrick (Hijmans 2016b), in which case momentuHMM automati-

cally extracts the appropriate covariate values from the raster based on the time and

location of each observation (see example in section 3.3).

2.1 Data preparation and visualization

For temporally-regular location data with negligible measurement error, the prepData

function is used to create a momentuHMMData object that can be used for data visual-

ization and further analysis. The arguments for prepData include:

• data A data frame with T + 1 rows including optionally a field ‘ID’ (identifiers

for different individuals), coordinates from which step length (‘step’) and turning

angle (‘angle’) data streams are to be calculated, any additional data streams,

and any covariates identified in the covNames and angleCovs arguments. Alter-

vatively, data can be a crwData object returned by crawlWrap.

• type Coordinate type; ‘UTM’ if easting-northing or ‘LL’ if longitude-latitude.

• coordNames Names of the two coordinate columns in data. If coordNames=NULL

then step lengths, turning angles, and any location-based covariates (i.e., those

specified by spatialCovs, centers, centroids, and angleCovs) are not calcu-

lated.

• covNames Character vector indicating the names of any covariates in data. Any

variables in data (other than “ID”) that are not identified in covNames or angleCovs

are assumed to be data streams.

11

Table 2. Univariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). If circular-circular regression is specified for the mean of angular distributions
(“vm” and “wrpcauchy”), then a link function based on Rivest et al. (2016) is used. Users
seeking additional univariate probability distributions are encouraged to contact the authors.

Distribution Support Parameters Link function1

Bernoulli (“bern”) zt ∈ {0, 1} prob ∈ (0, 1) logit
Beta (“beta”) zt ∈ (0, 1) shape1 > 0 log

shape2 > 0 log
zero-mass ∈ (0, 1) logit
one-mass ∈ (0, 1) logit

Categorical (“cat”) zt ∈ {1, . . . , k} prob1, . . . , probk−1 ∈ (0, 1) mlogit
Correlated Rice (“crwrice”) zt > 0 beta > 0 log

sigma > 0 log
zero-mass ∈ (0, 1) logit

Correlated Von Mises (“crwvm”) zt ∈ (−π, π] beta > 0 log
sigma > 0 log

Exponential (“exp”) zt > 0 rate > 0 log
zero-mass ∈ (0, 1) logit

Gamma (“gamma”) zt > 0 mean > 0 log
sd > 0 log
zero-mass ∈ (0, 1) logit

Log normal (“lnorm”) zt > 0 location ∈ IR identity
scale > 0 log
zero-mass ∈ (0, 1) logit

Logistic (“logis”) zt ∈ IR location ∈ IR identity
scale > 0 log

Negative binomial (“negbinom”) zt ∈ {0, 1, . . .} mu > 0 log
size > 0 log

Normal (“norm”) zt ∈ IR mean ∈ IR identity
sd > 0 log

Normal random walk (“rw_norm”) zt ∈ IR mean ∈ IR identity
sd > 0 log

Poisson (“pois”) zt ∈ {0, 1, . . .} lambda > 0 log
Non-central t (“t”) zt ∈ IR df > 0 log

ncp ∈ IR identity
Von Mises (“vm”) zt ∈ (−π, π] mean ∈ (−π, π] tan(mean/2)

concentration > 0 log
Von Mises (“vmConsensus”) zt ∈ (−π, π] mean ∈ (−π, π] Rivest et al.

kappa > 0 log
Weibull (“weibull”) zt > 0 shape > 0 log

scale > 0 log
zero-mass ∈ (0, 1) logit

Wrapped Cauchy (“wrpcauchy”) zt ∈ (−π, π] mean ∈ (−π, π] tan(mean/2)
concentration ∈ (0, 1) logit

1Link functions (g) relate natural scale parameters (θ) to a T ×K design matrix (X) and K−vector
of working scale parameters (β ∈ RK) such that g(θ) = Xβ.

12

Table 3. Multivariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). Users seeking additional multivariate probability distributions are encouraged
to contact the authors.

Distribution Support Parameters Link function1

Bivariate normal (“mvnorm2”) zt ∈ IR2 mean.x ∈ IR identity
mean.y ∈ IR identity
sd.x > 0 log
sd.y > 0 log
corr.xy ∈ (−1, 1) logit

Bivariate normal random walk (“rw_mvnorm2”) zt ∈ IR2 mean.x ∈ IR identity
mean.y ∈ IR identity
sd.x > 0 log
sd.y > 0 log
corr.xy ∈ (−1, 1) logit

Continuous-time correlated random walk (“ctcrw”) zt ∈ IR2 beta > 0 log
sigma > 0 log

Trivariate normal (“mvnorm3”) zt ∈ IR3 mean.x ∈ IR identity
mean.y ∈ IR identity
mean.z ∈ IR identity
sd.x > 0 log
sd.y > 0 log
sd.z > 0 log
corr.xy ∈ (−1, 1) logit
corr.xz ∈ (−1, 1) logit
corr.yz ∈ (−1, 1) logit

Trivariate normal random walk (“rw_mvnorm3”) zt ∈ IR3 mean.x ∈ IR identity
mean.y ∈ IR identity
mean.z ∈ IR identity
sd.x > 0 log
sd.y > 0 log
sd.z > 0 log
corr.xy ∈ (−1, 1) logit
corr.xz ∈ (−1, 1) logit
corr.yz ∈ (−1, 1) logit

1Link functions (g) relate natural scale parameters (θ) to a T ×K design matrix (X) and K−vector
of working scale parameters (β ∈ RK) such that g(θ) = Xβ.

13

• spatialCovs List of Raster-class objects (Hijmans 2016b) containing spatio-

temporally referenced covariates. Covariates specified by spatialCovs are ex-

tracted from the raster layer(s) based on the location data. Raster stacks may

also be included, in which case the appropriate z values (e.g. time, date) must

also be included in data.

• centers 2-column matrix providing the coordinates for any activity centers (e.g.,

potential centers of attraction or repulsion) from which distance and angle covari-

ates will be calculated based on the location data and returned in the momentuHMMData

object.

• centroids List where each element is a data frame containing the x-coordinates

(’x’), y-coordinates (’y’), and times for a centroid (i.e., a dynamic activity center

for which the coordinates can change over time) from which distance and an-

gle covariates will be calculated based on the location data and returned in the

momentuHMMData object.

• angleCovs Character vector indicating the names of any circular-circular regres-

sion angular covariates in data or spatialCovs that need conversion from stan-

dard direction (in radians relative to the x-axis) to turning angle (relative to

previous movement direction).

Summary plots of the momentuHMMData object returned by prepData can be created

for any data stream or covariate using the generic plot function.

If location data are temporally-irregular or subject to measurement error, then they

are not suitable for prepData. In this case, momentuHMM can be used to perform a

2-stage multiple imputation approach (McClintock 2017). We discuss this pragmatic

approach to incorporating uncertainty attributable to observation error and temporal

irreglarity into multivariate HMM analyses in section 2.8.

2.2 HMM specification and fitting

Once a momentuHMMData object has been created using prepData, then the data are

ready to be passed to the generalized multivariate HMM-fitting function fitHMM. There

are many different options for specifying HMMs using fitHMM, so here we will only

focus on several of the most important and useful features (further details of all fitHMM

14

arguments are in the package documentation). The bare essentials of fitHMM include

the arguments:

• data A momentuHMMData object

• nbStates Number of latent states (N)

• dist A named list indicating the probability distributions of the data streams.

• estAngleMean An optional named list indicating whether or not to estimate the

angle mean for data streams with angular distributions (e.g. turning angle). If

not estimated (the default), the angle mean is fixed to 0.

• formula Regression formula for the transition probability covariates

• stationary Logical indicating whether or not the initial distribution is considered

equal to the stationary distribution (must be FALSE if formula includes time-

varying covariates)

• Par0 A named list containing vectors of starting values for the state-dependent

probability distribution parameters of each data stream

These seven arguments are all that are needed in order to fit the HMMs currently

supported in moveHMM (Michelot et al. 2016). For example, here is how the analysis of

15 “wild haggis” tracks described in Michelot et al. (2016) would be implemented using

momentuHMM:

library(momentuHMM)

Load raw data

rawHaggis<-read.csv("rawHaggises.csv")

Process data

processedHaggis<-prepData(data=rawHaggis,covNames=c("slope","temp"))

Fit HMM

initial step distribution natural scale parameters

stepPar0 <- c(1,5,0.5,3) # (mu_1,mu_2,sd_1,sd_2)

initial angle distribution natural scale parameters

anglePar0 <- c(0,0,1,8) # (mean_1,mean_2,concentration_1,concentration_2)

fitHaggis <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

15

Par0 = list(step = stepPar0, angle = anglePar0),

formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

Note that many of the arguments in fitHMM are lists, with each element of the

list corresponding to a data stream. The list names provided in dist, Par0, and

estAngleMean (e.g. ‘step’ and ‘angle’) must therefore have a corresponding column in

data with the same name. Additional data streams can be included in a multivariate

HMM by simply adding the additional elements to these list arguments (see examples

in sections 3.2, 3.8, and 3.9). State-dependent probability distributions with positive

support (e.g. gamma, Weibull; see Table 2) can be zero-inflated (with additional zero-

mass parameters), while the beta distribution can be zero- and/or one-inflated (with

additional one-mass parameters).

As seen above, the formula argument can include many of the functions and op-

erators commonly used to construct terms in R linear model formulas (e.g. a*b, a:b,

cos(a)). The formulaDelta argument can be similarly used to specify covariate models

for the initial distribution. The formula argument can also be used to specify transition

probability matrix models that incorporate cyclical patterns (using the cosinor spe-

cial function; see example in section 3.1), splines for explaining other more complicated

patterns (e.g., bs and ns functions in the R base package splines), and factor variables

(e.g., formula=~ID for individual-level effects). By default the formula argument ap-

plies to all state transition probabilities, but the special functions state, toState, and

betaCol allow for state- and parameter-specific formulas to be specified (see examples

in sections 3.4 and 3.8). While betaCol allows a formula to be specified for a specific

transition (e.g. state 3 → 1), state and toState allow a formula to be specified for all

transitions from (e.g. 3 → 1, 3 → 2) and to (e.g. state 1 → 3, 2 → 3) specific states,

respectively. The betaCons argument allows for equality constraints among any of the

transition probability parameters (e.g. γ
(t)
12 = γ

(t)
21 ; see example in section 3.8). Specific

state transition probabilities can also be fixed to zero (or any other value) using the

fixPar argument, which can be useful for incorporating more behavioral realism. For

example, fixPar can be used to prohibit or enforce switching from one particular state

to another (possibly as a function of spatio-temporal covariates).

Similar to the formula argument for state transition probability modelling, it is

through the DM argument of fitHMM that models are specified for the state-dependent

16

probability distribution parameters for each data stream. DM is a list argument contain-

ing an element for each data stream, but each element itself is also a list specifying the

design matrix formulas for each parameter. For example, the following fits the exact

same wild haggis model as above, but employs a user-specified (intercept-only) design

matrix for the step length data stream:

stepDM <- list(mean = ~1, sd = ~1)

Fit HMM using user-specified DM

fitHaggisDM <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

DM = list(step = stepDM),

Par0 = list(step = log(stepPar0), angle = anglePar0),

formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

Note that when DM is specified for a data stream, the initial parameter values (Par0)

for that data stream now correspond to columns of the resulting design matrix and must

be on the working scale instead of the natural scale. In this case, because the log link is

used for the natural parameters of the gamma distribution, Par0$step was specified on

the log scale. The functions getPar, getPar0, checkPar0, and getParDM are designed

to assist users in the specification of design matrices and corresponding initial values on

the working scale for any given model (see package documentation for further details).

DM formulas are just as flexible as the formula argument and, in addition to common

linear model formula functions and operators, can also include cyclical cosinor models

(see section 3.1), splines, factor variables, and state-specific probability distribution

parameter formulas (see examples in sections 3.3 and 3.4). As with the state transition

probabilities, working parameters for probability distributions can also be fixed to user-

specified values using the fixPar argument.

Specification of design matrices using DM is not limited to formulas. Alternatively,

“pseudo-design” matrices can be specified, using an R matrix with rows corresponding

to the natural parameters and columns corresponding to the working parameters. The

elements in the matrix may be numeric or character strings containing model formula

terms (see examples in sections 3.4, 3.7, and 3.8). Using a pseudo-design matrix for

step length, the following is yet another way to implement the exact same wild haggis

model:

17

stepDMp <- matrix(c(1,0,0,0,

0,1,0,0,

0,0,1,0,

0,0,0,1),4,4,byrow=TRUE)

rownames(stepDMp) <- c("mean_1","mean_2","sd_1","sd_2")

colnames(stepDMp) <- c("mean_1:(Intercept)","mean_2:(Intercept)",

"sd_1:(Intercept)","sd_2:(Intercept)")

Fit HMM using user-specified DM

fitHaggisDMp <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

DM = list(step = stepDMp),

Par0 = list(step = log(stepPar0), angle = anglePar0),

formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

(note that column and row names for pseudo-design matrices are not required but can be

useful). Pseudo-design matrices allow for the sharing of common working parameters

(such as intercept terms) among natural scale parameters, and this can be used to

constrain natural scale parameters (e.g., µ1 ≤ µ2) when used in tandem with the

workBounds argument (see sections 3.2, 3.7, and 3.8). This is particularly useful for

preventing state label switching when repeatedly fitting the same HMM using multiple

imputation methods (see section 2.8).

2.3 Circular-circular regression model for the angle mean

Another noteworthy fitHMM argument, circularAngleMean, is a list argument that

enables users to specify circular-circular regression models for the mean (µ) parameter

of angular distributions, such as the wrapped Cauchy and von Mises, instead of circular-

linear models based on the tangent link function (Table 2). When circularAngleMean

is specified as TRUE for any given angular data stream (e.g. turning angle), then a

special link function based on Rivest et al. (2016) is used:

µ = atan2(sin(Xµ)βµ, 1 + cos(Xµ)βµ), (2)

where Xµ is a T ×K matrix composed of the turning angles between K angular covari-

ates (e.g., wind direction, sea surface current direction) and the bearing of movement

18

during the previous time step; that is, each element

xt,k = atan2(sin(rt,k − bt−1), cos(rt,k − bt−1)) (3)

for angular covariate rt,k and k = 1, . . . , K (note that prepData and MIfitHMM calcu-

late Xµ based on the angleCovs, centers, or centroids arguments so users need not

bother). Because this link function is designed for turning angles, a turning angle of 0

is provided as the reference angle (hence the “1+” preceeding the cosine term in Eq.

2). Thus as a trade-off between biased and correlated movements, the working param-

eters (βµ) for the expected turning angle at time t weight the attractive (or repulsive)

strengths of the angular covariates relative to directional persistence. When all βµ = 0,

the model reduces to a correlated random walk, but an increasingly biased random walk

results as βµ gets larger (or smaller). Alternatively, circularAngleMean can be speci-

fied as a numeric scalar, where the value specifies the coefficient for the reference angle

(i.e., directional persistence) term in Eq. 2. For example, setting circularAngleMean

to 0 specifies a circular-circular regression model with no directional persistence term

(thus specifying a biased random walk instead of a biased correlated random walk; see

examples in sections 3.4, 3.5.2, and 3.6). Setting circularAngleMean to 1 is equivalent

to setting it to TRUE, i.e., a circular-circular regression model with a coefficient of 1 for

the directional persistence reference angle. Many interesting hypotheses about animal

movmement can be addressed using circular-circular regression on movement direction,

including the effects of wind, sea surface currents (see example in section 3.3), centers of

attraction or repulsion (see examples in sections 3.4, 3.5, and 3.8), group dynamic mod-

els (see example in section 3.6), and dynamic activity centers (see example in section

3.8.

The special function angleFormula can be included in DM formulas or pseudo-design

matrices in order to model the circular-circular regression angle mean as a function of

the relative strength (or importance) of angular covariates (Rivest et al. 2016):

µ = atan2((Zµ ◦ sin(Xµ))βµ, 1 + (Zµ ◦ cos(Xµ))βµ), (4)

where Zµ is a T × K matrix of positive real covariates (e.g. wind speed, sea surface

current speed) and ◦ is the Hadamard (i.e. element-wise) product. The special function

angleFormula can also be used to specify group- or individual-level effects on the

19

circular-circular regression angle mean coefficients (βµ).

Also based on Rivest et al. (2016), the von Mises consensus distribution is a special

von Mises circular-circular regression model where the concentration parameter (ρ)

depends on the level of agreement among short-term directional persistence (i.e. moving

forward) and the angular covariates:

ρ = κ

√[
(Zµ ◦ sin(Xµ))βµ

]2
+
[
1 + (Zµ ◦ cos(Xµ))βµ

]2
. (5)

Note that the von Mises consensus distribution is parameterized in terms of µ and κ

(see Table 2), but momentuHMM returns and plots real parameter estimates in terms of

µ and ρ. When all βµ are non-negative, then the minimum and maximum values for

ρ are κ|1−min(Zµβµ)| and κ
[
1 + max(Zµβµ)

]
, respectively. In the consensus model,

κ can be interpreted as the concentration towards a turning angle of zero (i.e. moving

forward) when the angular covariate components perfectly cancel out. See section 3.3

for example code using angleFormula and the von Mises consensus (“vmConsensus”)

distribution.

2.4 Individual-level random effects

HMM applications often assume the initial distribution and state transition probabil-

ity matrix is the same for all individuals (i.e. “complete pooling” of the individuals’

time series). But in reality, individuals often do not exhibit the same state-switching

dynamics and there is individual-level variation. Individual heterogeneity can often be

well explained by covariates (e.g., sex, age class) and included in formula, but it is not

always possible to identify (and/or measure) all of the important covariates that drive

this variation. One option is to include separate state-switching dynamics for each indi-

vidual (i.e. “no pooling”) by specifying formulaDelta = ~ID and formula = ~ID, but

this “fixed” effect approach can result in many additional parameters to estimate (it

also doesn’t explain very much about potential factors driving individual heterogene-

ity). Alternatively, generic individual heterogeneity in state-switching dynamics can be

modeled as a “random” effect (e.g. McClintock 2021).

20

2.4.1 Discrete-valued random effects

While continuous-valued individual-level random effects can be computationally de-

manding, discrete-valued random effects are more computationally feasible and can be

effective in “mopping up” individual heterogeneity in the initial distribution and state

transition probabilities that is not explained by measurable covariates. Discrete-valued

random effects have recently been used in HMMs of animal movement (e.g. McKellar

et al. 2014; Towner et al. 2016; DeRuiter et al. 2017; Isojunno et al. 2017), and these

“mixed” HMMs can be fitted with fitHMM (or MIfitHMM) through the mixtures and

formulaPi arguments. The mixtures argument specifies the number of mixtures (K)

in the model, where each mixture represents a possible initial distribution and tran-

sition probability matrix, and each individual time series is assumed to be driven by

exactly one of these mixtures. For K mixtures, the mixture weight (πk; k = 1, . . . , K)

is the probability that the kth mixture underlies the state-switching dynamics for a

given individual, and a model formula for π can be specified using the formulaPi ar-

gument. For example, Towner et al. (2016) found support for K = 3 mixtures and

a sex covariate on π in their HMM for white shark movement, indicating that each

of the three possible state-switching dynamics were exhibited differently for males and

females; the random effects component of their model would be specified in fitHMM (or

MIfitHMM) by simply setting mixtures = 3 and formulaPi = ~sex. Note that because∑K
k=1 πk = 1, momentuHMM uses a multinomial logit link function for π when covariates

are included in formulaPi. We demonstrate how to fit discrete-valued individual-level

random effects on the initial distribution and state transition probabilities using the

long-finned pilot whale example from Isojunno et al. (2017) in section 3.9.

2.4.2 Continuous-valued random effects

For continuous individual-level random effects on state transition probabilities, the

randomEffects function can be used to implement the approximate approach of Burn-

ham & White (2002). In essence, this is a 2-stage approach where in the first stage the

fixed effects model is fitted with fitHMM (i.e. with formula=~0+ID) and in the second

stage the random effects model is fitted with randomEffects based on the output of

the fixed effects model. See ?randomEffects and McClintock (2021) for further details.

21

2.5 Hierarchical hidden Markov models

Hierarchical hidden Markov models (HHMMs; see Leos-Barajas et al. 2017; Adam et al.

2019) can also be fitted in momentuHMM. HMMs with hierarchical structures allow for

data streams and/or state transitions to occur at multiple regular time scales. For ex-

ample, biotelemetry data are often collected at different time scales (e.g. 1-hr intervals

for one data stream and 1-min intervals for another data stream) or state transitions

can be governed by both larger- and finer-scale behavioral processes. HHMMs are inte-

grated into the workhorse functions of momentuHMM and are specified via hierarchically-

structured arguments for the data stream probability distributions (hierDist), be-

havioral states (hierStates), state transition probabilities (hierFormula, hierBeta),

and initial distributions (hierFormulaDelta, hierDelta) using the data.tree pack-

age (Glur 2018). We demonstrate how the HHMM harbor porpoise and garter snake

examples from Leos-Barajas et al. (2017) and the Atlantic cod and horn shark examples

from Adam et al. (2019) can be fitted using momentuHMM in section 3.10.

2.6 Random walk probability distributions

momentuHMM includes several normal random walk probability distributions that can

be specified in the dist argument (see Tables 2 and 3), including univariate (e.g. for

modeling depths), bivariate (e.g. for modeling 2-D positions), and trivariate (e.g. for

modeling 3-D positions) normal random walks. These can be particularly useful for

modeling movement on positions directly instead of steps and turns. A random walk

model assumes position at time t is a function of the position at time t − 1; in its

simplest form without any covariates, we have xt ∼ N(xt−1, σ
2) for the univariate case.

Multivariate normal distributions require some additonal book-keeping when prepar-

ing the data; the altCoordNames argument in prepData and MIfitHMM and the mvnCoords

argument in fitHMM and MIfitHMM are designed to help properly format and identify

multivariate coordinate data streams. For example, if a bivariate normal data stream

name is “loc” (e.g. dist=list(loc="mvnorm2")), then the data must include columns

“loc.x” and ”loc.y” for the x- and y- coordinates, respectively. When using a multi-

variate normal random walk distribution, the previous position can be referenced in DM

formulas or pseudo-design matrices. For example, for a bivariate normal random walk

data stream named “mu” (e.g. dist=list(mu="rw_mvnorm2")), the previous position

22

can be refereced in DM as “mu.x tm1” and “mu.y tm1”. This allows for persistence in

velocity to be included via the special formula function crw(x_tm1,lag), where argu-

ment x_tm1 is the previous position (e.g. “mu.x tm1” or “mu.y tm1”) and argument

lag specifies the time lag for the persistence.

We demonstrate use of the bivariate normal random walk model for loggerhead turtle

movements relative to ocean surface currents in section 3.3 and for African buffalo

recharge dynamics in section 3.11. We also demonstrate how to simulate movement

subject to barriers or other constraints (e.g. land for marine animals) using a bivariate

normal random walk in section 3.12.

2.7 Recharge dynamics

Hooten et al. (2019) describe a novel way of modeling animal movement behavior based

on an aggregated physiological process associated with decision making and movement

in heterogeneous environments. In essence, their “recharge” model allows state switch-

ing to be a function of this process (i.e. the recharge function). For example, we

can think of the recharge function as the gas tank of our car. When the gas tank

is full, we are more-or-less free to drive wherever we want. However, when the tank

gets low, we must eventually return to the same gas station (or find a new one) to

refill our tank. In its simplest form, the recharge model associates “good” habitat

with recharging (i.e. filling the tank) and less-suitable habitat with discharging (i.e.

emptying the tank). The recharge function thus increases and decreases over time de-

pending on the decision-making process of the individual, the resulting behavior, and

the habitat conditions it encounters. By simply imbedding a recharge function into state

transition probabilities, we can therefore begin to investigate models with an explicit,

mechanistic connection to physiological dynamics! Hooten et al. (2019) formulated

their recharge model in continuous time, but its discrete-time analogue can be imple-

mented in momentuHMM. This is accomplished by including the recharge(g0, theta)

special function in the transition probability matrix formula, where the arguments g0

and theta are formulas for the initial recharge function at time t = 0 (g0) and the

recharge function coefficients (θ), respectively. For example, if one were to specify

formula = ~recharge(g0 = ~1, theta = ~cov1+cov2) for a 2-state (e.g., state 1 =

“charged” and state 2 = “discharged”) model, the recharge function at time t (gt) would

23

be:

gt = g0 +
t∑

j=1

θ0 + cov1jθ1 + cov2jθ2,

where cov1j and cov2j are the corresponding habitat covariate values for the individual’s

location at time j. We demonstrate how to fit a discrete-time version of the African

buffalo example from Hooten et al. (2019) in section 3.11.

2.8 Multiple imputation

When location data are temporally-irregular or subject to measurement error, then

they are not suitable for standard maximum-likelihood HMM analyses based on the

forward algorithm (Eq. 1). In this case, momentuHMM can be used to perform the 2-

stage multiple imputation approach of McClintock (2017). The basic concept is to

first employ a single-state (i.e., N = 1) movement model that is relatively easy to fit

but can accommodate location measurement error and temporally-irregular or missing

observations (e.g. Johnson et al. 2008). The second stage involves repeatedly fitting the

desired HMM to m temporally-regular realizations of the position process drawn from

the model output of the first stage. Data streams or covariates that are dependent

on location (e.g., step length, turning angle, habitat type, snow depth, sea surface

temperature) will of course vary among the m realizations of the position process, and

the pooled inferences across the HMM analyses therefore reflect location uncertainty.

There are three primary functions (MIfitHMM, MIpool, and crawlWrap) for per-

forming multiple imputation HMM analyses in momentuHMM, and all rely on parallel

processing to speed up computations. crawlWrap is a wrapper function for fitting the

continuous-time correlated random walk (CTCRW) model of Johnson et al. (2008) to

one or more tracks (subject to location measurement error and/or temporal irregular-

ity) and then predicting temporally-regular tracks of the user’s choosing (e.g. 15 min,

hourly, daily) based on the CTCRW model output. crawlWrap returns a crwData ob-

ject that can be used to draw m realization of the position process within the MIfitHMM

function. MIfitHMM is essentially a wrapper function for fitHMM that repeatedly fits

the same user-specified HMM to m imputed data sets and stores the output from each

of the m model fits. If a crwData object is provided, then MIfitHMM will first draw

m imputations based on the crwData output and then fit the specified HMM to each

imputed data set. If users wish to use a movement model other than the CTCRW to

24

account for measurement error and temporal irregularity (e.g. Calabrese et al. 2016;

Gurarie et al. 2017), or if other observation error processes (e.g. missing data) are to

be accounted for in the imputation step, MIfitHMM can also be used for analysis of a list

of m momentuHMMData objects that were imputed by the user. Based on the m model

fits, the MIpool function calculates pooled estimates, standard errors, and confidence

intervals for the working scale parameters, natural scale parameters (based on trans-

formations of the pooled working parameters and mean or user-specified values for any

covariates), state sequences, state probabilities, and activity budgets (i.e. the propor-

tion of the T times step assigned to each state) using standard multiple imputation

formulae (Rubin & Schenker 1986; McClintock 2017). MIpool can be called separately

or within MIfitHMM (using the poolEstimates argument), and the function returns a

miSum object containing the pooled output across all imputatons. See sections 3.2, 3.3,

3.4, and 3.7 for example HMM analyses that use multiple imputation to account for

location measurement error and temporally irregularity.

2.9 Model visualization and diagnostics

The generic plot functions for momentuHMMmodels (plot.momentuHMM and plot.miSum)

plot the data stream histograms along with their corresponding estimated probability

distributions, the estimated natural parameters and state transition probabilities as

a function of any covariates included in the model, and the tracks of all individuals

(color-coded by the most likely state sequence). By default, the probability distribu-

tions are plotted based on the means of any covariate values, but user-specified covari-

ate values for the plots can be provided using the covs argument. When the argument

plotCI=TRUE, then confidence intervals for the natural parameters and state transition

probabilities are also plotted. Confidence intervals are calculated from the working

parameter estimates based on the delta method and finite-difference approximations of

the first derivative for the transformation using the numDeriv::grad function (Gilbert

& Varadhan 2016). For multiple imputation analyses (plot.miSum), all plots are based

on the pooled parameter estimates and the means of any covariates (if not provided

by the covs argument) across each imputation. Using the argument errorEllipse,

plot.miSum will include estimated location error ellipses in the plots of individual

tracks. The functions plotSat, plotSpatialCov, and plotStates (Table 1) provide

further methods for visualizing model results.

25

Diagnostic tools include the calculation and plotting of pseudo-residuals (Zucchini

et al. 2016) using the pseudoRes and plotPR functions, respectively. For discrete

distributions (e.g. Bernoulli, Poisson), a continuity adjustment is used for calculating

pseudo-residuals. Akaike’s Information Criterion can be calculated for one or more

models using the AIC.momentuHMM function.

2.10 Simulation

The functions simData (and simHierData) can be used to simulate multivariate HMM

(or HHMM) data from scratch or based on the estimated parameters of existing momentuHMM

or miSum models. The simData and simHierData arguments are very similar to those

used for model specification in fitHMM (e.g., dist, hierDist, DM) and data prepara-

tion in prepData (e.g., spatialCovs, centers), but they include additional arguments,

lambda and errorEllipse, for simulating location data subject to temporal irregularity

and measurement error, respectively. The spatialCovs argument allows for rasters of

spatio-temporal covariate values to be utilized in simulation models, while the centers

argument allows activity centers to be incorporated. Thus simData and simHierData

can be used to simulate more ecologically-realistic tracks (potentially subject to obser-

vation error) that can be useful for study design, power analyses, and assessing model

performance. Goodness-of-fit can also be investigated by drawing simulated data sets

from a fitted model and comparing them to observed properties of the data (Morales

et al. 2004). While simData and simHierData can be used for simulating tracks from

fitted models, we note that it assumes the location data are Cartesian coordinates; the

simData and simHierData functions are therefore not appropriate for simulating tracks

from models that were fitted to unprojected (latitude and longitude) data.

2.11 Continuous-time hidden Markov models

The functions fitCTHMM and MIfitCTHMM can be used to fit continuous-time hidden

Markov models (e.g. Bladt & Sørensen 2005; Jackson 2011; Zucchini et al. 2016), where,

for multivariate normal random walk (Table 3) or Poisson (“pois”) data streams, the

data are modeled as a function of the time interval between observations (∆t). All

other data stream distributions assume observations do not depend on ∆t, i.e., they

are “instantaneous” and only depend on the state active at time t. Continuous-time

models can be useful for modelling location or count data collected irregularly in time.

26

Continuous-time HMMs characterize the hidden state process by its infinitesimal gen-

erator matrix:

Q =

st+1 = 1 st+1 = 2 . . . st+1 = N

−q1,1 q1,2 . . . q1,S st = 1

q2,1 −q2,2 . . . q2,S st = 2
...

...
. . .

...

qS,1 qS,2 . . . −qS,S st = N

, (6)

where qi,j ≥ 0 for i ̸= j and qi,i =
∑

j ̸=i qi,j. Because of these constraints on the state

transition rates, the working parameters are specified on the log scale (instead of the

logit scale as in discrete-time HMMs):

qi,j = exp(Xβi,j) (7)

for i ̸= j, where X are the covariates and βi,j are the corresponding working-scale

coefficients for transitions from state i to state j. For any time interval ∆t > 0, the

state transition probabilities from time t to time t + 1 can then be derived using the

matrix exponential, Γt = exp (Q∆t) =
∑∞

r=0
(Q∆t)

r

r!
. These models can therefore still

be fitted using the forward algorithm (Eq. 1). All utility functions in momentuHMM (e.g.

viterbi, stateProbs, pseudoRes) can also be used for continuous-time models.

In order to fit continuous-time HMMs, the data still needs to be prepared using

prepData. The prepData arguments CT, Time.name, and Time.unit are used to identify

the data as being in continuous time (i.e. by setting CT=TRUE), the time column in the

data frame (Time.name; default: 'time'), and, if the times are of class date-time

or date, the time units (Time.unit; e.g., 'auto', 'secs', 'mins', 'hours', 'days',

'weeks') for calculating ∆t.

The simCTHMM function can be used to simulate continuous-time HMMs, either

“from scratch” or from a fitted model. Simulating data in continuous time requires

specification of the sampling rate for the (temporally-irregular) observations (via the

lambda argument, where E(∆t) = 1/lambda), and, if covariates are included in the state

transition rate matrix using the formula argument, an upper bound for the transition

rate out of any state (via the kappa argument). The latter is required in order to propose

times at which a state transition could occur (Blackwell et al. 2016; McClintock &

27

Lander 2024). The kappa argument can either be: 1) a list specifying how to calculate

this upper bound based on the values of the covariates (X) and their corresponding

transition rate coefficients (β) using Eq. 7 (see the simCTHMM help file for additional

details); or 2) a finite positive scalar. When kappa is specified as a finite positive scalar

(and model=NULL), the working-scale coefficients are specified on the logit scale (instead

of the log scale) and the transition rates are calculated as:

qi,j = κ
exp(Xβi,j)

1 +
∑

k ̸=i exp(Xβi,k)
(8)

for i ̸= j, where κ = kappa, X are the covariates, and β are the corresponding coef-

ficients. This ensures that the transition rate from state i to state j cannot exceed κ.

The downside of this approach is that simulations can take longer as kappa increases

(because potential switches become more frequent), so kappa should only be set as large

as necessary.

Although not required, kappa can also be specified as a finite positive scalar when

fitting models with fitCTHMM or MIfitCTHMM. This can help avoid numerical issues

during model fitting and is useful when fitting data simulated under Eq. 8 to ensure the

working-scale state transition coefficients (beta in simCTHMM and beta0 in fitCTHMM)

are on the same scale. When kappa is specified as a finite positive scalar in fitCTHMM

or MIfitCTHMM, Eq. 8 is used instead of Eq. 7. Note that when attempting to simulate

from a fitted model using simCTHMM, for consistency the working-scale coefficients will

remain on the same scale as in model for the simulation. So if kappa=Inf (the default

in fitCTHMM) in the fitted model object, the maximum transition rate from state i to

state j could potentially exceed the kappa specified for the simulation; this will trigger

an error and suggests kappa needs to be specified as a larger finite positive scalar for the

simulation (or that kappa needs to be specified as a finite positive scalar in fitCTHMM).

Importantly, simulated or fitted continuous-time random walk models in momentuHMM

rely on an Euler-discretization scheme that requires ∆t to be sufficiently small for this

approximation to be accurate (e.g. Michelot et al. 2019; McClintock & Lander 2024).

For multistate continuous-time movement models, another important consideration is

the so-called “snapshot” property (e.g. Glennie et al. 2021). The snapshot property is

violated when the observations depend on ∆t, and, therefore, the observed locations

depend on the behavioral state sequence over the entire interval between times t and t +

28

1. momentuHMM skirts around this issue by assuming ∆t is reasonably small (i.e. lambda

is reasonably large) relative to the serial correlation in the state process (e.g. McClin-

tock & Lander 2024). For this to be reasonably satisfied, an intuitive rule-of-thumb is

∆t ≤ 1
maxi(qi,i)

(i.e. lambda ≥ maxi (qi,i)) for i ∈ {1, 2, . . . , N} (Glennie et al. 2021).

The continuous-time HMMs in momentuHMM also assume any time-varying covariates are

piece-wise constant between observations (e.g. Jackson 2011). One particularly useful

continuous-time movement model is the habitat-driven Langevin diffusion of Michelot

et al. (2019); we demonstrate how to fit their model using momentuHMM in section 3.13.

3 Examples

We will now demonstrate some of the capabilities of momentuHMM using real teleme-

try data. These examples are intended for demonstration purposes only, and we do not

claim these example analyses represent improvements relative to previous or alternative

analyses for these data sets. While only some of the key workflow elements are included

here, complete R code and further details for these analyses are available in the “vi-

gnettes/examples” source directory and GitHub (https://github.com/bmcclintock/

momentuHMM/tree/master/vignettes/examples).

3.1 African elephant

As our first example, we use an African elephant (Loxodonta africana) bull track de-

scribed in Wall et al. (2014) and publicly available from the movebank.org data repos-

itory.

We can load the data from the URL (this requires an Internet connection):

URL <- paste0("https://www.datarepository.movebank.org/bitstream/handle/",

"10255/move.373/Elliptical%20Time-Density%20Model%20%28Wall%",

"20et%20al.%202014%29%20African%20Elephant%20Dataset%20%",

"28Source-Save%20the%20Elephants%29.csv")

rawData <- read.csv(url(URL))

The data set contains two tracks; for this analysis, we only consider the first one.

In addition to hourly locations, the tag also collected external temperature data. We

subset the data frame to keep only the relevant rows and columns:

29

https://github.com/bmcclintock/momentuHMM/tree/master/vignettes/examples
https://github.com/bmcclintock/momentuHMM/tree/master/vignettes/examples

select and rename relevant columns

rawData <- rawData[,c(11,3,4,5,6)]

colnames(rawData) <- c("ID","time","lon","lat","temp")

only keep first track

rawData <- subset(rawData,ID==unique(ID)[1])

The data now has the following columns:

head(rawData)

ID time lon lat temp

1 Salif Keita 2008-03-22 17:00:00.000 -2.160167 15.65350 38

2 Salif Keita 2008-03-22 18:00:00.000 -2.160075 15.65452 35

3 Salif Keita 2008-03-22 19:00:00.000 -2.159902 15.65451 32

4 Salif Keita 2008-03-22 20:00:00.000 -2.159435 15.65489 30

5 Salif Keita 2008-03-22 21:00:00.000 -2.158113 15.65512 29

6 Salif Keita 2008-03-22 22:00:00.000 -2.157848 15.65461 28

Location measurement error is negligible for these terrestrial GPS data, although

about 1% of the hourly observations collected between 22 March 2008 and 30 Septem-

ber 2010 are missing. Instead of simply ignoring these missing data, we can employ

crawlWrap to predict the missing locations based on the CTCRW model of Johnson

et al. (2008) prior to conducting our HMM analysis.

To use crawlWrap, we convert times from factors to POSIX, and project the observed

locations to UTM coordinates:

convert times from factors to POSIX

rawData$time <- as.POSIXct(rawData$time,tz="GMT")

project to UTM coordinates using package sp

library(sp)

llcoord <- SpatialPoints(rawData[,3:4],

proj4string=CRS("+proj=longlat +datum=WGS84"))

utmcoord <- spTransform(llcoord,CRS("+proj=utm +zone=30 ellps=WGS84"))

add UTM locations to data frame

rawData$x <- attr(utmcoord,"coords")[,1]

rawData$y <- attr(utmcoord,"coords")[,2]

30

Then, we call crawlWrap to fit a CTCRW model and predict hourly locations:

fit crawl model

crwOut <- crawlWrap(obsData=rawData, timeStep="hour",

theta=c(6.855, -0.007), fixPar=c(NA,NA))

Here the desired time step is specified by the timeStep argument, and theta and

fixPar arguments are the same as for crawl::crwMLE (Johnson 2017). For the choice

of initial parameters in crawlWrap, we refer the reader to the documentation of the

package crawl, in particular crawl::crwMLE and crawl::crwPredict. We now have a

complete set of temporally-regular location data.

Autocorrelation function (ACF) estimates suggest there are 24-hour cycles in the

step length data, and this presents an opportunity to demonstrate the use of the

cosinor function for incorporating cyclical behavior in model parameters using momentuHMM.

We create a momentuHMMData object, and the 24-hour cosinor model covariate:

create momentuHMMData object from crwData object

elephantData <- prepData(data=crwOut, covNames="temp")

add cosinor covariate based on hour of day

elephantData$hour <- as.integer(strftime(elephantData$time, format = "%H", tz="GMT"))

As seen here, the function prepData can also be used for pre-processing the best

predicted track data from crawlWrap output. The 24-hour cosinor covariate (“hour”)

is simply a set of integers (0, 1, . . . , 23) indicating the hour of day for each observation.

The ACF plot of the step lengths, shown in Figure 1, was obtained with:

acf(elephantData$step[!is.na(elephantData$step)],lag.max=300)

Our aim is to fit a 2-state HMM to the elephant track that includes temperature

effects on the turning angle concentration parameters and cycling temperature effects

(with a 24-hour periodicity) on the step length and state transition probability pa-

rameters. Complex models such as this can require many parameters, and it can be

challenging to choose good starting parameter values for the optimization. Here, we

take an incremental approach, starting from a simpler model with no covariates. In

momentuHMM, the function getPar0 extracts initial parameters from a fitted (nested)

HMM, given arguments for the more complex model.

31

For the covariate-free 2-state model, six initial parameters need to be chosen: for

each state, the mean and standard deviation of the gamma distribution of step lengths,

and the concentration of the wrapped Cauchy distribution of turning angles. Look-

ing at the histograms of the step lengths and the turning angles (e.g. output by

plot(elephantData)) is often useful to choose good starting parameter values.

label states

stateNames <- c("encamped","exploratory")

distributions for observation processes

dist = list(step = "gamma", angle = "wrpcauchy")

initial parameters

Par0_m1 <- list(step=c(100,500,100,200),angle=c(0.3,0.7))

fit model

m1 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m1,

estAngleMean = list(angle=FALSE), stateNames = stateNames)

To ensure convergence, we could also use the argument retryFits to specify the

number of attempts to minimize the negative log-likelihood based on random pertur-

bations of the parameter estimates at the current minimum.

We can build on complexity, by including the temperature and time of day as

covariates in the state transition probabilities. We use the function getPar0 to extract

the new starting parameter values.

formula for transition probabilities

formula <- ~ temp * cosinor(hour, period = 24)

initial parameters (obtained from nested model m1)

Par0_m2 <- getPar0(model=m1, formula=formula)

fit model

m2 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m2$Par,

beta0=Par0_m2$beta, stateNames = stateNames, formula=formula)

The special function cosinor(hour, period = 24) internally creates the cosinor

model covariates, cos(2π×hour/period) and sin(2π×hour/period), and includes both

32

terms (plus interactions with “temp”) in the fitted model.

Finally, we can fit the more complex model, including the effect of temperature and

time of day on the parameters of the state-dependent distributions of steps and angles.

formulas for parameters of state-dependent observation distributions

DM <- list(step = list(mean = ~ temp * cosinor(hour, period = 24),

sd = ~ temp * cosinor(hour, period = 24)),

angle = list(concentration = ~ temp))

initial parameters (obtained from nested model m2)

Par0_m3 <- getPar0(model=m2, formula=formula, DM=DM)

fit model

m3 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m3$Par,

beta0 = Par0_m3$beta, DM = DM, stateNames = stateNames,

formula = formula)

The above model m3 identifed a state of slow undirected movement (“encamped”),

and a state of faster and more directed movement (“exploratory”) (Figure 1). For a

fitted model, the function viterbi computes the most likely state sequence:

decode most likely state sequence

states <- viterbi(m3)

derive percentage of time spent in each state

table(states)/nrow(elephantData)

Here, about 74% of the steps were attributed to the “encamped” state, and 26%

were attributed to the “exploratory” state.

We can use AIC(m1,m2,m3) to compare the three fitted models in terms of AIC;

here, m3 is overwhelmingly supported by the AIC when compared to alternative models

with fewer covariates.

The model can be visualized with the generic function plot, which was used for the

plots shown in Figure 2, and the decoded track in Figure 1.

plot(m3, plotCI = TRUE, covs = data.frame(hour=12))

Interestingly, this model suggests step lengths and directional persistence for the

“encamped” state decreased as temperature increased, step lengths for both states

33

tended to decrease in the late evening and early morning, and transition probabilities

from the “encamped” to “exploratory” state decreased as temperature increased (Figure

2).

Model fit can be assessed using the pseudo-residuals, with the functions pseudoRes

and plotPR. The residual ACF plot shown in Figure 1 was produced by:

compute pseudo-residuals for the steps and the angles

pr <- pseudoRes(m3)

plot the ACF of step pseudo-residuals

acf(pr$stepRes[!is.na(pr$stepRes)],lag.max = 300)

Autocorrelation function plots of the pseudo-residuals indicate this model explained

much of the periodicity in step length, although there does still appear to be some room

for improvement.

3.2 Northern fur seal

In our second example, we use the northern fur seal (Callorhinus ursinus) example from

McClintock et al. (2014) to demonstrate the use of additional data streams for distin-

guishing behaviors with similar horizontal trajectories in a multivariate HMM. The data

consist of 241 temporally-irregular Fastloc GPS locations obtained during a foraging trip

of a nursing female near the Pribilof Islands of Alaska, USA, from 10-17 October 2007.

The tag included time-depth recording capabilities, and the dive activity data were

summarized as the number of foraging dives over T = 228 temporally-regular 1 hr time

steps. To fit the N = 3 state (1=“resting”, 2=“foraging”, 3=“transit”) of McClintock

et al. (2014) using momentuHMM, we first used crawlWrap to predict temporally-regular

locations at 1 hr time steps assuming a bivariate normal measurement error model and

merged the results with the foraging dive data using the crawlMerge function. Then

multiple imputation was used to account for location measurement error by repeatedly

fitting the HMM to nSims realizations of the position process using MIfitHMM:

nbStates <- 3

stateNames <- c("resting", "foraging", "transit")

dist <- list(step = "gamma", angle = "wrpcauchy", dive = "pois")

Par0 <- getParDM(nbStates = nbStates, dist = dist,

34

Figure 1. Plot of the elephant track produced using the ‘plotSat’ function (top-left panel),
autocorrelation function (ACF) plot of the corresponding step length data (top-right panel),
plot of the Viterbi-decoded state sequence for the 2-state (“encamped” and “exploratory”)
model generated using the generic ‘plot’ function (bottom-left panel), and the step length
pseudo-residual ACF plot for this model using the ‘plotPR’ function (bottom-right panel).

35

Figure 2. Selected plots for the 2-state (“encamped” and “exploratory”) African elephant
example generated using the generic ’plot’ function. Top panels present histograms of the step
length (top-left) and turning angle (top-right) data along with the estimated state-dependent
probability distributions based on the mean temperature (temp = 29.7 degrees celsius) at
12:00 GMT (hour = 12). Middle panels present estimates (and 95% confidence intervals)
for the step length mean parameter of the “encamped” state as a function of temperature
and hour of day. Bottom-left panel presents estimates for the turning angle concentration
parameter of the “encamped” state as a function of temperature. Bottom-right panel presents
estimated state transition probabilities (1 = “encamped”, 2 = “exploratory”) as a function
of temperature at 12:00 GMT.

36

Par = Par, DM = DM, workBounds = workBounds,

estAngleMean = list(angle = FALSE))

Fixpar <- list(dive = c(-100, NA, NA))

nfsFits <- MIfitHMM(crwOut, nSims = 100, nbStates = nbStates, dist = dist,

Par0 = Par0, DM = DM, workBounds = workBounds,

estAngleMean = list(angle = FALSE),

fixPar = fixPar, retryFits = 30,

stateNames=stateNames)

plot(nfsFits)

Here we specified a gamma distribution for step length (‘step’), wrapped Cauchy dis-

tribution for turning angle (‘angle’), and Poisson distribution for the number of foraging

dives (‘dive’). The function getParDM was used to organize the starting values for the

data stream working parameters (Par0) in the correct format based on DM, workBounds,

and estimates of the natural parameters (Par) from McClintock et al. (2014). The DM

and workBounds arguments were specified to avoid label switching among the nSims

imputed data model fits and enforce similar state-dependent probability distribution

constraints as McClintock et al. (2014); for example, constraining the Poisson rate pa-

rameters such that the “foraging” state tends to have higher numbers of foraging dives

than the “transit” state (λ2 > λ3; see Eq. 14 in section 3.7 for more details on parameter

constraints using DM in conjunction with the userBounds and workBounds arguments).

To prohibit foraging dives for the “resting” state, we used the fixPar argument to

effectively fix the Poisson rate parameter to zero on the natural scale (i.e. λ1 ≈ 0). To

help deal with the problem of convergence to local maxima, the retryFits argument

allows users to specify the number of times to attempt to re-fit each model using random

perturbations of the parameter estimates as the starting values for optimization.

The results are very similar to those of the discrete-time model of McClintock et al.

(2014), with periods of foraging often followed by resting (Figure 3). The “activ-

ity budgets” (i.e. the proportion of time steps allocated to each state) calculated by

MIpool based on the estimated state sequences for each imputation were 0.31 (95% CI:

0.25−0.37) for “resting”, 0.28 (95% CI: 0.23−0.35) for “foraging”, and 0.41 (95% CI:

0.33−0.5) for “transit”.

37

Figure 3. Plots of the northern fur seal example results generated using the generic ‘plot’
function. The estimated probability distributions for step length (top-left panel), turning
angle (top-right panel), and number of foraging dives (bottom-left panel) for the 3-state
(“resting”, “foraging”, and “transit”) model are plotted along with histograms of these data
streams. The temporally-regular predicted locations (and 95% ellipsoidal confidence bands)
and estimated states are plotted in the bottom-right panel. All estimates are pooled across
multiple imputations of the position process and thus reflect uncertainty attributable to lo-
cation measurement error and temporally-irregular observations.

38

3.3 Loggerhead turtle

For our third example, we demonstrate how to model movement direction and step

length as a function of angular covariates using hitherto unpublished loggerhead turtle

(Caretta caretta) data for a captive-raised juvenile released in 2012 on the coast of North

Carolina, USA. The data consist of 165 temporally-irregular Argos locations subject

to measurement error and rasters of daily ocean surface currents collected between 20

November and 19 December 2012. Assuming a gamma distribution for step length (lt)

and a wrapped Cauchy distribution for turning angle (ϕt), we model the mean step

length parameter (µl
t) as a function of ocean surface current speed (wt) and direction

(rt) relative to the bearing of movement (bt):

µl
t = exp(βl

0 + βl
1wt cos(bt − rt)), (9)

and the turning angle mean parameter (µϕ
t) as a trade-off between short-term directional

persistence and bias in the direction of ocean surface currents using the circular-circular

regression link function:

µϕ
t = atan2(sin(dt)β

ϕ, 1 + cos(dt)β
ϕ), (10)

where dt = atan2(sin(rt − bt−1), cos(rt − bt−1)).

We wish to fit a 2-state HMM to the turtle data, with a “foraging” state unaffected

by currents and a “transit” state potentially influenced by ocean surface currents as in

Eqs. 9 and 10. We used crawlWrap to predict T = 350 temporally-regular locations at

2 hr time steps assuming a bivariate normal measurement error model that accounts for

the Argos location quality class (i.e. 3,2,1,0,A,B) of each observation. We then again

used multiple imputation to account for location uncertainty by repeatedly fitting the

HMM to nSims realizations of the position process using MIfitHMM. We first draw nSims

realizations of the position process and extract the corresponding spatial covariates

from the raster bricks for ocean surface current speed (“speedBrick”) and direction

(“dirBrick”) using MIfitHMM with fit=FALSE:

miTurtleData <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,

spatialCovs = list(w = speedBrick, d = dirBrick, r = dirBrick),

angleCovs = "d")

39

When the fit argument is FALSE, MIfitHMM returns a list of length nSims composed

of momentuHMMData objects (miData). For convenience and ease of interpretation, we

manually added an additional covariate (angle osc = cos(bt − rt)) to each of the im-

puted data sets and fitted the 2-state HMM using Eqs. 9 and 10 for state 2 (“transit”):

nbStates<-2

dist <- list(step = "gamma", angle = "wrpcauchy")

DM <- list(step = list(mean = ~state2(w:angle_osc), sd = ~1),

angle = list(mean = ~state2(d), concentration= ~1))

turtleFits <- MIfitHMM(miTurtleData$miData, nbStates = nbStates, dist = dist,

Par0 = Par0, DM = DM,

estAngleMean = list(angle = TRUE),

circularAngleMean = list(angle = TRUE))

plot(turtleFits, plotCI = TRUE, covs = data.frame(angle_osc = cos(0)))

Note that the state2 special function in DM indicates the covariate formulas are

specific to state 2 (“transit”) and the circularAngleMean argument indicates that

circular-circular regression link function is to be used on the mean turning angle pa-

rameter as in Eq. 10.

For the “transit” state, pooled parameter estimates indicated step lengths increased

with ocean surface current speed and as the bearing of movement aligned with ocean sur-

face current direction (βl
1 = 0.4, 95% CI: 0.09− 0.7; Figure 4). The estimated wrapped

Cauchy distribution for turning angle had mean angles (µϕ
t) biased towards the direc-

tion of ocean surface currents for each time step (βϕ = 0.26, 95% CI: 0.04− 0.48), with

concentration parameter ρϕ2 = 0.86 (95% CI: 0.82−0.9) indicating turning angles were

concentrated at µϕ
t . Thus movement during the “transit” state appears to strongly fol-

low ocean surface currents (mean angle osc = 0.88, SD = 0.22), while movement during

the “foraging” state exhibited shorter step lengths (µl
1 = 3001m, 95% CI: 2439− 3563)

perpendicular to ocean surface currents (mean angle osc = 0.07, SD = 0.27), with some

directional persistence (ρϕ1 = 0.49, 95% CI: 0.37−0.61). The turtle spent 0.56 (95% CI:

0.46−0.66) of the 2 hr time steps in the “foraging” state and 0.44 (95% CI: 0.34−0.54)

of time steps in the “transit” state as it travelled northeast along a predominant current

until it (presumably) found an attractive foraging patch (Figure 4).

It may often make more sense to weight angular covariates (such as ocean sur-

face current direction) by their relative strength or importance. For example, weak

40

Figure 4. Selected results from the loggerhead turtle example. Top panels include esti-
mates and 95% confidence intervals for the mean step length parameter as a function of
ocean surface current speed (w) when ocean surface current direction (rt) is the same as
the bearing (bt) of movement (i.e. angle osc = cos(bt − rt) = 1; top-left panel), mean
step length parameter as a function of angle osc at the mean ocean surface current speed
(w = 0.46 m/s; top-middle panel), and mean turning angle parameter as a function of
dt = atan2(sin(rt − bt−1), cos(rt − bt−1)) (top-right panel). Bottom panel plots the pooled
track, 95% error ellipse confidence bands, and state (orange = “foraging”, blue = “transit”)
estimates based on multiple imputations of the position process relative to ocean surface cur-
rent speed (m/s) and direction on 2 December 2012.

41

ocean surface currents may be less likely to influence movement direction than strong

ocean surface currents. This could easily be included in our turtle model using the

angleFormula(cov, strength, by) special function in DM, where cov is an angle co-

variate (e.g. wind direction), strength is an optional positive real covariate (e.g. wind

speed), and by is an optional factor variable for individual- or group-level effects (e.g.

ID, sex):

DM$angle = list(mean = ~state2(angleFormula(d, strength = w)),

concentration= ~1)

which would yield the following model for the “transit” state mean angle parameter:

µϕ
t = atan2(wt sin(dt)β

ϕ, 1 + wt cos(dt)β
ϕ). (11)

Still another option would be to use the von Mises consensus model, where the

concentration parameter would now depend on the level of agreement between short-

term directional persistence (i.e. going forward) and ocean surface currents:

dist$angle = "vmConsensus"

DM$angle = list(mean = ~state2(angleFormula(d, strength = w)),

kappa = ~1)

which would yield the following model for the “transit” state concentration parameter:

ρϕt = κ
√

[wt sin(dt)βϕ]2 + [1 + wt cos(dt)βϕ]2. (12)

If there were multiple turtles in this dataset, then individual-level effects could be

included on µϕ by simply specifying angleFormula(d, strength = w, by = ID) or

angleFormula(d, by = ID) (with no strength effects).

One disadvantage of modeling steps and turns as above is that the fitted model can-

not be properly simulated using simData. This is because simData is unable to calculate

new realizations of the constructed covariate (angle osc = cos(bt − rt)). However, we

can implement a very similar model on the positions directly using a bivariate normal

random walk. While arguably more intuitive, modeling the positions directly also has

the added benefit that the fitted model can be properly simulated using simData. Sim-

ilar to the continuous-time potential function approach of Brillinger et al. (2012) and

42

Hooten et al. (2019), we can model the positions µ = (µx, µy) as a bivariate normal

random walk where the position at time t is a function of the position at time t−1 and

the ocean surface current velocity vectors V (µt−1) = (ut−1, vt−1), where u is easting

and v is northing:

µt | St = s ∼ N
(
µt−1 + (µt−1 − µt−2)β1 + V (µt−1)β2I(s = 2), σ2

sI
)
, (13)

where I() is the indicator function and I is a 2×2 identity matrix. This is analogous to

our model for steps and turns, where (µt−1−µt−2) accounts for persistence in velocity.

Thus when in state 1 (i.e., St = 1) the movement model is a correlated random walk,

but when in state 2 (i.e., St = 2) the movement model includes a potential function

surface based on ocean surface currents.

Recall that multivariate normal distributions require some additonal book-keeping

when preparing the data; the altCoordNames argument in prepData and MIfitHMM

and the mvnCoords argument in fitHMM and MIfitHMM are designed to help properly

format and identify multivariate coordinate data streams. For example, if a bivariate

normal data stream name is “loc” (e.g. dist=list(loc="mvnorm2")), then the data

must include columns “loc.x” and ”loc.y” for the x- and y- coordinates, respectively.

When using a multivariate normal random walk distribution, the previous position can

be referenced in DM formulas or pseudo-design matrices. For example, for a bivariate

normal random walk data stream named “mu” (e.g. dist=list(mu="rw_mvnorm2")),

the previous position can be refereced in DM as “mu.x tm1” and “mu.y tm1”. This allows

for persistence in velocity to be included as in Eq. 13 via the special formula function

crw(x_tm1,lag), where argument x_tm1 is the previous position (e.g. “mu.x tm1” or

“mu.y tm1”) and argument lag specifies the time lag for the persistence (lag=1 in

this example, but higher order lags could also be included). A complete demonstration

of how to implement this bivariate normal random walk model can be found in the

“turtleExample rw mvnorm2.R” script in the momentuHMM “vignettes” source directory

(or at https://github.com/bmcclintock/momentuHMM).

3.4 Grey seal

For our next example, we perform a similar analysis of a grey seal (Halichoerus grypus)

track that was originally conducted by McClintock et al. (2012) using Bayesian methods

and (computationally-intensive) Markov chain Monte Carlo. The data consist of 1045

43

https://github.com/bmcclintock/momentuHMM

temporally-irregular Fastloc GPS locations collected in the North Sea between 9 April

and 11 August 2008. Because the seal repeatedly visited the same haul-out and foraging

locations, it provides a nice example for demonstrating how to implement biased move-

ments relative to activity centers using momentuHMM. McClintock et al. (2012) fitted a

5-state model to these data that included three center of attraction states, with move-

ment biased towards two haul-out sites (“Abertay” and “Farne Islands”) and a foraging

area (“Dogger Bank”), and two “exploratory” states (”low speed”, ”high speed”) that

were unassociated with an activity center. After using crawlWrap to predict T = 1515

temporally-regular locations at 2 hr time steps including a bivariate normal measure-

ment error model, we can perform a very similar analysis to McClintock et al. (2012) in

momentuHMM by using the centers argument and state-specific functions for the prob-

ability distribution parameters. A cluster analysis on the observed locations using the

R package dtwclust (Sarda-Espinosa 2017) identified three centroids with coordinates

that were nearly identical to the three activity centers (“Abertay”, “Farne Islands”,

and “Dogger Bank”) identified by McClintock et al. (2012). We use these coordinates

to derive covariates relative to the activity centers when drawing nSims realizations of

the position process:

crwSim <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,

center = centers)

Specifying the centers argument results in the calculation of two covariates for

each activity center: the distance (with ‘.dist’ suffix) and angle (with ‘.angle’ suffix)

from each location at time t. These covariates can then be used to model parameters

as a function of the distance and angle to activity centers for each time step:

dist <- list(step = "weibull", angle = "wrpcauchy")

distFormula <- ~state1(I(Abertay.dist>2500)) + state2(I(Farne.dist>2500))

+ state3(I(Dogger.dist>15000))

angleFormula <- ~state1(Abertay.angle) + state2(Farne.angle)

+ state3(Dogger.angle)

stepDM <- list(shape = distFormula, scale = distFormula)

angleDM <- list(mean = angleFormula, concentration = distFormula)

DM <- list(step = stepDM, angle = angleDM)

Similar to McClintock et al. (2012), we assume a Weibull distribution for step length

where both the shape and scale parameter depend on the distance from the location at

44

time t to each activity center. For the activity centers on land (“Abertay” and “Farne”),

we allow the (state-dependent) step length parameters to change when the seal is beyond

2500m of the haulout. For the “Dogger” activity center, we allow the parameters to

change when the seal is beyond 15000m of this (presumably) foraging area. We thus

allow the movement behavior to change within these activity center states upon entering

or leaving the vicinity of these sites. We assume a wrapped Cauchy distribution for

turning angle with (state-dependent) mean angle derived from the direction to each

activity center at time t, and the concentration parameter is modeled similarly to the

step length parameters. For the two “exploratory” states, we assumed they are simple

random walks unaffected by proximity to activity centers. To complete our model

specification, we use the knownStates argument to assign the seal to the corresponding

activity center state whenever it was within the 2500m (haul-out area) or 15000m

(foraging area) thresholds for each imputed data set:

greySealFits <- MIfitHMM(miDat, nSims = 400,

nbStates = 5, dist = dist,

Par0 = Par0, beta0 = beta0, fixPar = fixPar,

formula = distFormula,

estAngleMean = list(angle=TRUE),

circularAngleMean = list(angle=0),

DM = DM, knownStates = knownStates)

plot(greySealFits, plotCI = TRUE)

As with the step length and turning angle concentration parameters, the state tran-

sition probabilities are also allowed to change as a function of distance to activity centers

(as specified by the formula argument). The starting values (Par0 and beta0) for each

imputation were extracted from a single HMM fitted to the best predicted locations

from crawlWrap, and circularAngleMean=list(angle=0) was used to remove short-

term directional persistence (and thus formulate the model as a mixture of biased and

simple random walks).

Estimated activity budgets for the 5 states of this multiple imputation HMM were

0.28 (0.27 − 0.3) for the “Abertay” haul-out state, 0.12 (0.11 − 0.13) for the “Farne

Islands” haul-out state, 0.37 (0.35 − 0.38) for the “Dogger Bank” foraging state, 0.11

(0.05− 0.2) for a low-speed “exploratory” state, and 0.12 (0.07− 0.21) for a high-speed

“exploratory” state. All three activity center states exhibited shorter step lengths and

45

less biased movements when within the vicinity of these targets (Figure 5). Results

from this analysis were thus very similar to those of McClintock et al. (2012), but

this implementation required far less computation time and no custom model-fitting

algorithms.

The simData function can be used to simulate tracks from a fitted model:

greySealSim<-simData(model = greySealFits, centers = centers,

initialPosition = centers[1,],

obsPerAnimal = 1515)

A simulated track is presented along with the fitted track in Figure 6. While po-

tentially useful for study design, power analysis, and prediction, the simData function

can also be helpful in assessing goodness of fit by repeatedly drawing simulated data

sets from a fitted model and comparing them to observed properties of the data (e.g.

Morales et al. 2004).

3.5 Southern elephant seals

Here, we analyse the southern elephant seal (Mirounga leonina) data from Michelot

et al. (2017) using momentuHMM. The data set consists of 15 tracks, each encompassing

(at most) one foraging trip, starting from Kerguelen Island. We want to fit the model

described by Michelot et al. (2017), with the four following states:

1. outbound trip from the colony to the ice;

2. searching;

3. foraging;

4. inbound trip from the ice to the colony.

The data set has three columns: “ID” (track ID), “x” (longitude), and “y” (latitude):

head(tracks)

ID x y

1 1 70.60946 -49.60737

2 1 70.82908 -50.08287

3 1 70.90029 -50.32835

46

Figure 5. Selected results from the grey seal example. Panels include estimates and 95%
confidence intervals for the “Abertay” haul-out state step length scale parameter as a function
of distance in meters (‘Abertay.dist’; top-left panel), “Abertay” haul-out state turning angle
concentration parameter as a function of distance (top-right panel), “Dogger Bank” foraging
state step length scale parameter as a function of distance (‘Dogger.dist’; bottom-left panel),
and the “Dogger Bank” foraging state turning angle concentration parameter as a function
of distance (bottom-right panel).

47

Figure 6. Fitted and simulated tracks from the grey seal example. This seal tended to
move in a clockwise fashion between two haul-out locations (“Abertay” and “Farne Islands”)
and a foraging area (“Dogger Bank”) in the North Sea. Top panel plots the pooled track,
95% error ellipse confidence bands, and state estimates based on the 5-state HMM fitted to
multiple imputations of the position process. Red points indicate the locations of the three
activity centers. Black points indicate the (temporally-irregular) observed locations. Bottom
panel presents the locations and states for a track simulated from the fitted model using the
‘simData’ function.

48

4 1 70.85766 -50.54746

5 1 70.63792 -50.90529

6 1 70.48480 -50.99666

From the locations, we use prepData to derive the step lengths and turning angles,

as well as the distance and bearing (relative to previous movement direction as in Eq.

3) to the Kerguelen Island colony (with coordinates 70◦ longitude and -49◦ latitude):

center <- matrix(c(70,-49),nrow=1,dimnames=list("colony"))

data <- prepData(data=tracks, type="LL", centers=center)

Note that distances are in kilometers and angles are based on initial bearings (us-

ing geosphere::bearing; Hijmans 2016a) when calculated from longitude and latitude

coordinates.

3.5.1 Model 1: no covariates

We start by fitting a covariate-free 4-state correlated random walk model, which we

will use to extract starting parameter values for more complex models. We use the

argument fixPar to fix some transition probabilities to zero, following Michelot et al.

(2017). We set to NA the columns of unconstrained transition probabilities, and we fix

the intercept of the other columns to a large negative number (here −100) to set the

corresponding transition probabilities to be virtually zero (i.e. impossible transition).

As in Michelot et al. (2017), we set transition probabilities from outbound to forage,

outbound to inbound, search to outbound, forage to outbound, forage to inbound,

inbound to outbound, inbound to search, and inbound to forage to be effectively zero.

stateNames <- c("outbound","search","forage","inbound")

initial parameters

stepPar0 <- c(25,5,1,25,10,5,3,10)

anglePar0 <- c(15,5,2,15)

constrain transition probabilities

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100),

nrow=1)

49

m1 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=stepPar0, angle=anglePar0),

fixPar=list(beta=fixbeta), stateNames = stateNames)

3.5.2 Model 2

This model mimics the formulation of Michelot et al. (2017). We model the effect of

the distance to colony on the transition probability from outbound to search, and of

the time since departure on the transition probability from search to inbound.

time spent since left colony

time <- NULL

for(id in unique(data$ID)) {
nbSubObs <- length(which(data$ID==id))

approximately in months for interval = 9.6h

time <- c(time, (1:nbSubObs)/75)

}

data$time <- time

compute time since departure and include in formula below

formula <- ~ colony.dist + time

As before, we constrain the transition probability matrix to prevent some of the

transitions (e.g. from forage to inbound, etc.). We define a 3× 12 matrix for the beta

parameters, in which each column corresponds to a transition (1 → 2, 1 → 3, 1 → 4, 2 →
1, . . .), and each row corresponds to a covariate (intercept, distance to center, time since

departure). We set to NA the columns of unconstrained transition probabilities, and we

again fix the intercept of the other columns to a large negative number (here −100)

to set the corresponding transition probabilities to be virtually zero (i.e. impossible

transition).

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,

NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,NA, 0, 0, 0, 0, 0, 0),

nrow=3,byrow=TRUE)

50

Biased random walks are used to model the movement in states 1 and 4, with

repulsion away from the colony in the outbound trip, and attraction towards the colony

in the inbound trip. For that purpose, we include ‘colony.angle’ as a covariate on the

angle mean of the von Mises distributions for turning angles in states 1 and 4.

angleFormula <- ~ state1(colony.angle) + state4(colony.angle)

To specify the direction of the bias (away from or towards the colony), we fix the

parameters linking the mean turning angle to the direction of the colony. Because we

will remove the correlated random walk component of Eq. 2 for states 1 and 4 (by

setting circularAngleMean=list(angle=0); see section 2.3), we fix the coefficient to

−1 for state 1 (so that the mean direction is away from the colony), and we fix the

coefficient to +1 for state 4 (so that the mean direction is towards the colony). Note

that with only a single angular covariate, the magnitude of these fixed coefficients is

not important; only the sign is important (i.e. positive for attraction, negative for

repulsion). The four other parameters correspond to the angle concentrations and

should be estimated (NAs in fixPar).

fixPar <- list(angle=c(-1,1,NA,NA,NA,NA),beta=fixbeta)

Because no covariates are specified for the mean angle of state 2 (searching) and

state 3 (foraging), these states are reduced to correlated random walks with a mean

turning angle of zero (i.e. atan2(0, 0) = 0; see Eq. 2).

We can now fit the second model with starting parameter values extracted from the

simpler model using getPar0. In fitHMM, we use the arguments estAngleMean and

circularAngleMean to indicate that the angle mean is to be estimated using circular-

circular regression (with short-term directional persistence removed for states 1 and

4).

Par0 <- getPar0(model=m1, nbStates=4,

DM=list(angle=list(mean=angleFormula, concentration=~1)),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=0), formula=formula)

m2 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=Par0Parstep, angle=Par0Parangle),

51

beta0=Par0$beta, fixPar=fixPar, formula=formula,

DM=list(angle=list(mean=angleFormula, concentration=~1)),

estAngleMean=list(angle=TRUE), circularAngleMean=list(angle=0),

stateNames = stateNames)

Instead of relying entirely on fixPar for parameter constraints, an equivalent model

for the transition probabilities could be specified using the special function betaCol in

formula:

formula <- ~ betaCol1(colony.dist) + betaCol6(time)

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,

rep(NA,12),

rep(NA,12)),

nrow=3,byrow=TRUE)

fixPar <- list(angle=c(-1,1,NA,NA,NA,NA),beta=fixbeta)

Here betaCol1(colony.dist) specifies an effect of distance to colony only on the

transition from state 1 to state 2 (which corresponds to the first column of the beta

matrix) and betaCol6(time) specifies an effect of time since departure only on the

transition from state 2 to state 4 (which corresponds to the sixth column of the beta

matrix). When the special function betaCol is used, then fitHMM automatically fixes

the appropriate elements in the second (‘colony.dist’) and third (‘time’) rows of the beta

matrix to zero (without the user needing to do so manually using fixPar). However,

note that the first row (corresponding to the intercept terms) must still be manually

fixed to achieve the desired constraints on the transition probability matrix.

3.5.3 Model 3

In addition to the covariates included in model 2, we add the effect of distance to colony

on the step length and turning angle concentration parameters for states 1 and 4. We

specify the following formulas:

distFormula <- ~ state1(colony.dist) + state4(colony.dist)

stepDM <- list(mean=distFormula, sd=distFormula)

angleDM <- list(mean=angleFormula, concentration=distFormula)

52

The initial parameters are extracted from model 2, again using the function getPar0.

Instead of fixing the mean direction of movement like in model 2, we estimate it here as

a trade-off between short-term directional persistence and bias toward (or away) from

the colony (i.e. a biased correlated random walk as in Eq. 2).

remove fixed angle parameters

fixPar <- list(beta=fixbeta)

get starting parameters from m2

Par0 <- getPar0(model=m2, nbStates=4,

DM = list(step=stepDM, angle=angleDM),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=TRUE),

formula=formula)

the bias is estimated rather than fixed

Par0Parangle[c("mean_1:(colony.angle)","mean_4:(colony.angle)")] <- 0

m3 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=Par0Parstep, angle=Par0Parangle),

beta0=Par0$beta, fixPar=fixPar, formula=formula,

DM = list(step=stepDM, angle=angleDM),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=TRUE),

stateNames = stateNames)

The three fitted model can be compared with AIC(m1,m2,m3), which overwhelm-

ingly supports model 3. The most likely state sequence is obtained with viterbi(m3).

Figure 7 shows a map of the state-decoded track. The estimated circular-circular re-

gression coefficients for the angle means of state 1 (outbound) and state 4 (inbound)

were −0.66 (95% CI: −0.82 − −0.5) and 0.4 (95% CI: 0.32 − 0.49), respectively, thus

indicating biased correlated random walks with repulsion away from the colony during

outbound movements and attraction towards the colony during inbound movements.

The estimated regression coefficients for the step length mean and turning angle concen-

tration parameters for states 1 and 4 suggest that step lengths decreased and turning

angles became more concentrated at the mean angle as distance to colony increased

(Figure 8)

53

Figure 7. The 15 elephant seal tracks, colored by the most likely state sequence.

3.6 Group dynamic animal movement

Here we demonstrate how momentuHMM can be used to simulate and fit the group dy-

namic animal movement model of Langrock et al. (2014). In group dynamic models,

groups (e.g., herds, packs, schools) are allowed to influence the movement of social

individuals. One way to accomplish this is to model individual movements as being

attracted to a group “centroid”. Depending on the system, the centroid could simply

be the location of the group center (e.g., the mathematical centroid of the group) or

group leader (e.g., alpha wolf) at times t = 1, . . . , T . In this sense, the centroid can

be considered a dynamic activity center that changes position over time, and these

models are not necessarily limited to groups. For example, the centroid could instead

refer to predators, competitors, or human activity (in which case the centroid might be

repulsive rather than attractive!).

Dynamic activity centers can be simulated in simData using the centroids argu-

ment. Following simulation scenario A of Langrock et al. (2014), we first simulate a

group centroid as a single-state (i.e. N = 1) biased correlated random walk relative to

the origin:

54

Figure 8. Selected results from the elephant seal example. Panels include estimates and
95% confidence intervals for the “outbound” mean step length parameter (top-left panel),
“inbound” mean step length parameter (top-right panel), “outbound” turning angle concen-
tration parameter (bottom-left panel), and “inbound” turning angle concentration parameter
(bottom-right panel) as a function of distance to colony (‘colony.dist’). Distance to colony
has been standardized based on a mean of 2539 km (SD = 1021.3).

55

dist <- list(step="gamma", angle="vm")

nbObs <- 250

Parc <- list(step = c(15,10),

angle = c(0.15,log(1)))

DMc <- list(angle=list(mean = ~center1.angle,

concentration=~1))

centroidData <- simData(nbStates=1, dist=dist, Par=Parc, DM=DMc,

circularAngleMean = list(angle = TRUE),

centers = matrix(0,1,2),

obsPerAnimal = nbObs)

Now we can use the simulated centroid track (Fig. 9) as a dynamic activity center

and simulate the movement of a group of 20 individuals as a 2-state mixture of a biased

random walk (relative to the centroid) and a correlated random walk (independent of

the centroid):

nbAnimals <- 20

nbStates <- 2

stateNames <- c("group","solitary")

Par <- list(step = c(30,50,15,25),

angle = c(1,log(2.5),log(5)))

beta <- matrix(c(-2.944439,-1.734601),1,nbStates)

DM <- list(angle=list(mean = ~state1(centroid.angle),

concentration = ~1))

calculate stationary distribution

gamma <- diag(nbStates)

gamma[!gamma] <- exp(beta)

gamma <- t(gamma)

gamma <- gamma/apply(gamma,1,sum)

delta <- solve(diag(nbStates) - t(gamma) + 1, rep(1, nbStates))

draw random initial locations for each individual

initialPositions <- vector("list")

for (i in 1:nbAnimals) {

56

Figure 9. Selected results from the group dynamic animal movement example. Panels include
the simulated centroid path (top-left panel), the simulated paths of 20 individuals where state
1 (“group”) includes biased movements towards the centroid and state 2 (“solitary”) is a
correlated random walk independent of the group centroid (top-right panel), and two fitted
tracks that are colored by the most likely state sequence (bottom panels).

57

initialPositions[[i]] <- runif(2, -10, 10)

}

create centroid data frame

cD <- data.frame(x = centroidData$x, y = centroidData$y)

groupData <- simData(nbAnimals=nbAnimals, nbStates=nbStates, dist=dist,

Par = Par, beta = beta, delta = delta, DM = DM,

circularAngleMean = list(angle = 0),

centroids = list(centroid = cD),

obsPerAnimal = nbObs,

initialPosition = initialPositions,

states = TRUE, stateNames = stateNames)

Here state 1 (“group”) has biased movements toward the centroid and state 2 (“soli-

tary”) is simply a correlated random walk independent of the group centroid (Fig.

9). Note that despite this being a 2-state HMM, the working scale parameters for

turning angle (Par$angle) only includes 3 parameters (1 for the angle mean and 2

for the concentration parameters). This is because under the circular-circular regres-

sion model, no working parameter is specified1 for the reference turning angle of zero

(i.e., the component for short-term directional persistence; see Eq. 2) and no an-

gular covariates were specified in the model for state 2 (“solitary”). Thus the first

parameter corresponds to the working scale parameter of the centroid.angle co-

variate for state 1 (“group”), while the second and third parameters are the working

scale parameters for the concentration parameters for states 1 and 2, respectively. In

this case, we remove the correlated random walk component for state 1 by setting

circularAngleMean = list(angle = 0), and the angle mean parameter for state 1

was set at a positive value (+1) to enforce a biased random walk with attraction towards

the group centriod. As there is only a single angular covariate here, the magnitude of

this value is not important; only the sign matters (i.e. positive for attraction, negative

for repulsion).

Finally, we can fit the group dynamic model using fitHMM:

1More accurately, the working parameter for the reference angle is automatically fixed to β0 = 1
(or whatever scalar is provided by the circularAngleMean argument).

58

Par0 <- list(step = c(30,50,15,25),

angle = c(1,log(2.5),log(5)))

fixPar <- list(angle=c(1,NA,NA))

groupFit <- fitHMM(groupData, nbStates=nbStates, dist=dist, Par=Par0,

DM = DM, stationary = TRUE,

estAngleMean = list(angle = TRUE),

circularAngleMean = list(angle = 0), fixPar = fixPar,

stateNames = stateNames)

3.7 Harbour seals

Here we demonstrate how more complicated parameter constraints can be implemented

using the userBounds and workBounds arguments in fitHMM and MIfitHMM. This exam-

ple is based on the harbour seal analysis of McClintock et al. (2013). Using individual-

level random effects on probability distribution parameters, McClintock et al. (2013)

performed a Bayesian analysis of population-level activity budgets for 3-states (“rest-

ing”, “foraging”, and “transit”). While momentuHMM cannot be used to replicate this

analysis exactly, we can perform a similar analysis in the absence of individual-level

random effects. Here we will focus on several specific parameter constraints, but the

full example code can be found in the “vignettes” source directory.

The harbour seal data consist of 17 individuals (10 male, 7 female) and, as in the

northern fur example in section 3.2, both location and dive activity data. The location

data were obtained at temporally-irregular intervals, while the dive activity data were

obtained at regular 2-hour time steps. We therefore first used crawlWrap to fit and

predict locations for all 17 tracks at 2-hour time steps and then used crawlMerge to

merge the predicted locations with the dive activity data. We then fitted several differ-

ent models assuming: 1) no individual- or sex-level effects on all parameters (i.e., the

“null” model); 2) sex-level effects on all parameters; and 3) individual-level effects on

all parameters. Based on fitHMM fits for the best predicted tracks, AIC overwhelmingly

supported the model including individual-level effects on all parameters, but for sim-

plicity we will use the model including no individual- or sex-level effects to demonstrate

how the constraints of McClintock et al. (2013) can be implemented in momentuHMM. In

addition to the lack of individual-level random effects in our example, we also depart

59

from McClintock et al. (2013) in our use of zero-inflation parameters to account for

steps of length zero (i.e., lt = 0) and time steps with no dive activity (i.e., ωt = 0).

Unlike McClintock et al. (2013), note that our model 3 also includes individual-level

fixed effects on the state transition probabilities.

McClintock et al. (2013) fit their 3-state model using more complicated constraints

on the probability distribution parameters than any of our previous vignette exam-

ples. In addition to relational constraints among the “resting”, “foraging”, and “tran-

sit” states similar to those used in the northern fur seal example (section 3.2), these

constraints included upper bounds for the shape and scale parameters of the Weibull

distribution for step length, a minimum value for the “transit” concentration param-

eter of the wrapped Cauchy distribution for turning angle, and bounds on the shape

parameters of the beta distribution for dive activity specifically chosen to prevent any

“bathtub” shaped distributions for the proportion of each time step spent diving below

1.5m.

Before we demonstrate how to implement these constraints, we should first provide

more detail on exactly how the DM, userBounds, and workBounds arguments work

together in fitHMM (and MIfitHMM). While the DM argument should now be familiar, we

have thus far spent little time discussing the latter two arguments. The userBounds

argument specifies the lower and upper bounds for the natural scale parameters as a

2-column matrix. By default all working scale parameters (βθ) are bounded on the

real line, but the workBounds argument can be used to specify the lower and upper

bounds for the working scale parameters as a 2-column matrix. Specifically, momentuHMM

calculates natural scale parameters with finite bounds as

θ = (Uθ − Lθ) g
−1 (Xθβ

∗
θ) + Lθ,

where Lθ is the lower bound on the natural scale and Uθ is the upper bound on the

natural scale. Note that β∗
θ = βθ under the default values for workBounds. For natural

scale parameters with finite lower bounds and infinite upper bounds, we have

θ = g−1 (Xθβ
∗
θ) + Lθ.

When workBounds is specified, then additional link functions are used on the work-

ing scale parameters. For example, for working scale parameters with finite bounds, we

60

have

β∗
θ = (Uβθ

− Lβθ
) logit−1 (βθ) + Lβθ

,

where Lβθ
is the lower bound on the working scale and Uβθ

is the upper bound on the

working scale. When constraining working parameters with finite lower bounds (e.g.

zero) and infinite upper bounds, we have

β∗
θ = exp (βθ) + Lβθ

.

When constraining working parameters with infinite lower bounds and finite upper

bounds (e.g. zero), we have

β∗
θ = − (exp (−βθ)−Uβθ

) .

Although optimization within fitHMM and MIfitHMM is always performed on βθ, note

that β∗
θ (and a delta method approximation for the variance of this transformation) is

returned by CIbeta, MIpool, and print function calls.

For the Weibull distribution parameters for step length, McClintock et al. (2013)

constrained the shape parameter as < 5 (to prevent too “peaked” distributions) and the

scale parameter less than the maximum distance a harbour seal could travel in 2 hours

at 2 m/s (i.e., bs < 14400m) for s ∈ {1 = “resting”, 2 = “foraging”, 3 = “transit”}.
They also constrained b3 ≥ b2 ≥ b1. This is easily accomplished in momentuHMM using

the DM, userBounds, and workBounds arguments:

nbStates <- 3

stateNames <- c("resting", "foraging", "transit")

dist <- list(step = "weibull", angle = "wrpcauchy", dive = "beta")

stepDM<-matrix(c(1,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,

0,0,0,1,1,0,0,0,0,

0,0,0,1,1,1,0,0,0,

0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,1),nrow=3*nbStates,byrow=TRUE,

dimnames=list(c(paste0("shape_",1:nbStates),

61

paste0("scale_",1:nbStates),

paste0("zeromass_",1:nbStates)),

c(paste0("shape_",1:nbStates,":(Intercept)"),

"scale:(Intercept)","scale_2","scale_3",

paste0("zeromass_",1:nbStates,":(Intercept)"))))

stepworkBounds<-matrix(c(rep(-Inf,4),0,0,rep(-Inf,3),

rep(Inf,ncol(stepDM))),ncol(stepDM),2,

dimnames=list(colnames(stepDM),c("lower","upper")))

stepBounds<-matrix(c(0,5,

0,5,

0,5,

0,14400,

0,14400,

0,14400,

0,1,

0,1,

0,1),nrow=3*nbStates,byrow=TRUE,

dimnames=list(rownames(stepDM),c("lower","upper")))

When included in workBounds and userBounds for the step length data stream,

‘stepworkBounds’ and ‘stepBounds’ above constrain the parameters β∗
l,5 > 0 and β∗

l,6 > 0

such that 14400 ≥ b3 ≥ b2 ≥ b1 ≥ 0:

b1 = (14400− 0) logit−1 (βl,4) + 0

b2 = (14400− 0) logit−1 (βl,4 + exp(βl,5) + 0) + 0

b3 = (14400− 0) logit−1 (βl,4 + exp(βl,5) + 0 + exp(βl,6) + 0) + 0.

In order to force the “transit” state to have strong directional persistence, McClin-

tock et al. (2013) constrained the concentration parameter ρ3 > 0.75. In the absence

of relational constraints, userBounds could be used to constrain ρ3 > 0.75. However,

because we also wish to constrain ρ2 ≤ ρ3, we must make use of the workBounds ar-

gument. We can constrain ρ3 ≥ 0.75, ρ2 ≤ ρ3, and ρs ≤ 0.95 (s ∈ {1, 2, 3}) using the

following combination of DM, userBounds, and workBounds arguments:

angleDM <- matrix(c(1,0,0,

0,1,1,

0,1,0),nrow=nbStates,byrow=TRUE,

dimnames=list(paste0("concentration_",1:nbStates),

c("concentration_1:(Intercept)",

62

"concentration_23:(Intercept)",

"concentration_2")))

angleBounds <- matrix(c(0,0.95,

0,0.95,

0,0.95),nrow=nbStates,byrow=TRUE,

dimnames=list(rownames(angleDM),c("lower","upper")))

transitcons <- stats::qlogis((0.75 - angleBounds[3,1])

/(angleBounds[3,2] - angleBounds[3,1]))

angleworkBounds <- matrix(c(-Inf,transitcons,-Inf,

rep(Inf,2),0),ncol(angleDM),2,

dimnames=list(colnames(angleDM),c("lower","upper")))

When ‘angleworkBounds’ and ‘angleBounds’ are respectively included in workBounds

and userBounds for the turning angle data stream, this yields

ρ1 = (0.95− 0) logit−1 (βϕ,1) + 0

ρ2 = (0.95− 0) logit−1 (exp(βϕ,2) + 1.32− (exp(−βϕ,3)− 0)) + 0

ρ3 = (0.95− 0) logit−1 (exp(βϕ,2) + 1.32) + 0.

Here we constrained ρs ≤ 0.95 to avoid numerical convergence issues that can arise with

sparse data sets as ρs → 1. Also note that when using workBounds to enforce a specific

constraint on the natural scale, userBounds should not also include the corresponding

natural parameter constraint(s). For example, because we are constraining ρ3 ≥ 0.75

with the workBounds argument, we did not also include a 0.75 lower bound for ρ3 in

‘angleBounds’ above.

For the beta distribution of the dive activity data, McClintock et al. (2013) con-

strained the shape1 (υs) and shape2 (δs) parameters as follows:

1 ≤ υ1 ≤ δ1 ≤ 10

1 ≤ δ2 ≤ υ2 ≤ 10

where υ2 = υ3 and δ2 = δ3. These constraints can be imposed using the following

combination of DM, userBounds, and workBounds arguments:

omegaDM <- matrix(c(1,0,0,0,0,0,

0,0,1,1,0,0,

0,0,1,1,0,0,

63

1,1,0,0,0,0,

0,0,1,0,0,0,

0,0,1,0,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

0,0,0,0,0,1),nrow=nbStates*3,byrow=TRUE,

dimnames=list(c(paste0("shape1_",1:nbStates),

paste0("shape2_",1:nbStates),

paste0("zeromass_",1:nbStates)),

c("shape_1:(Intercept)","shape2_1",

"shape_2:(Intercept)","shape1_2",

"zeromass_1:(Intercept)",

"zeromass_23:(Intercept)")))

omegaworkBounds <- matrix(c(-Inf,0,-Inf,0,-Inf,-Inf,

rep(Inf,ncol(omegaDM))),ncol(omegaDM),2,

dimnames=list(colnames(omegaDM),c("lower","upper")))

omegaBounds <- matrix(c(1,10,

1,10,

1,10,

1,10,

1,10,

1,10,

0,1,

0,1,

0,1),nrow=nbStates*3,byrow=TRUE,

dimnames=list(rownames(omegaDM),c("lower","upper")))

Lastly, we wish to impose some biologically-meaningful constraints on the zero-

inflation parameters using the fixPar argument. Because we would never expect a

harbour seal in the “transit” state to exhibit a step length of zero, it makes sense to

constrain the zero-mass step length parameter for the “transit” state to (effectively)

zero. Similarly, we would not expect a harbour seal in the “foraging” or “transit” states

to exhibit no dive activity, and it therefore also makes sense to constrain the zero-mass

dive activity parameters for these states to zero. We can accomplish this using the

following fixPar argument:

fixPar <- list(step=c(rep(NA,nbStates*2),NA,NA,stats::qlogis(1.e-100)),

omega=c(rep(NA,4),NA,stats::qlogis(1.e-100)))

64

Putting it all together, we can fit our constrained model assuming no individual- or

sex-level effects using MIfitHMM:

DM <- list(step = stepDM, angle = angleDM, omega = omegaDM)

userBounds <- list(step = stepBounds,

angle = angleBounds,

omega = omegaBounds)

workBounds <- list(step = stepworkBounds,

angle = angleworkBounds,

omega = omegaworkBounds)

hsFits <- MIfitHMM(crwOut, nSims = 30,

nbStates = nbStates, dist = dist, Par0 = Par0,

DM = DM, workBounds = workBounds,

userBounds = userBounds, workBounds = workBounds,

fixPar = fixPar, stateNames = stateNames)

As was mentioned earlier, we found overwhelming AIC support for the individual-

level effects model relative to the sex-level effects models and the null model above.

While our best supported momentuHMM model included individual-level fixed effects,

the estimated tracks (Fig. 10) and inferences about population-level activity budgets

were similar to the individual-level random effects model of McClintock et al. (2013).

Estimated activity budgets for the males were 0.36 (95% CI: 0.35− 0.37) for “resting”,

0.53 (95% CI: 0.52− 0.55) for “foraging”, and 0.11 (95% CI: 0.1− 0.12) for “transit”.

Activity budgets for females were 0.3 (95% CI: 0.29 − 0.3) for “resting”, 0.61 (95%

CI: 0.6 − 0.62) for “foraging”, and 0.09 (95% CI: 0.09 − 0.1) for “transit”. We found

considerable individual variation in the state transition probabilities (Fig. 11), and

when comparing the estimated activity budgets of our analysis with those of McClintock

et al. (2013), we suspect the more noticeable differences between the time spent in

the “resting” and “foraging” states for males is attributable to our having included

individual-level effects on the state transition probabilities.

3.8 Northern fulmars

Using Bayesian analysis methods, Pirotta et al. (2018) fit a 6-state biased random walk

model to northern fulmar (Fulmarus glacialis) tracks in northern Scotland, UK. These

states included biased movements relative to a colony in Eynhallow (59.12◦ N, 3.1◦ W)

and fishing vessels that frequently work in the area. Pirotta et al. (2018) framed their

65

Figure 10. Two harbour seal tracks, colored by the most likely state sequence.

66

Figure 11. Estimated individual-level state transition probabilities for the harbour seal
example.

67

model as having two latent state process. Under the first state process, the direction

of movement could be biased away from the colony (“sea”), towards the nearest fishing

vessel (“boat”), or towards the colony (“colony”). Under the second state process, the

movement mode could either be fast and directionally-persistent (“transit”) or area-

restricted search (“ARS”). Thus the six states are “sea ARS”, “sea transit”, “boat

ARS”, “boat transit”, “colony ARS” and “colony transit”. Pirotta et al. (2018) also

allowed the distance to the nearest fishing vessel and time since leaving the colony to

affect state transitions to the “boat” and “colony” states. Here we demonstrate how a

very similar (but not identical) model can be implemented in momentuHMM.

The data are provided in a Dryad repository, but these will require some additional

formatting and preparation. We first load the raw data, create the required “ID” column

based on individual trips, convert time stamps to class POSIXct, and project the north-

ern fulmar (“Longitude”, “Latitude”) and nearest fishing vessel (“Boat Longitude”,

“Boat Latitude”) locations using the sp package:

library(sp)

load data provided by Pirotta et al

fulmarURL <- "https://datadryad.org/stash/downloads/file_stream/45899"

raw_data <- read.csv(url(fulmarURL),

stringsAsFactors = FALSE)

raw_data$ID <- raw_data$tripID

raw_data$Date <- as.POSIXct(raw_data$Date,tz="UTC",

format="%d/%m/%Y %H:%M")

project data

oldProj <- CRS("+proj=longlat +datum=WGS84")

newProj <- CRS("+init=epsg:27700")

coordinates(raw_data) <- c("Longitude","Latitude")

proj4string(raw_data) <- oldProj

raw_data <- as.data.frame(spTransform(raw_data, newProj))

coordinates(raw_data) <- c("Boat_Longitude","Boat_Latitude")

proj4string(raw_data) <- oldProj

raw_data <- as.data.frame(spTransform(raw_data, newProj))

For movements away from the colony (“sea ARS” and “sea transit”), Pirotta et al.

(2018) included bias in the direction of the farthest location from the colony for a

68

given trip. We can use the centers argument of prepData to identify these locations

(“max dist”) and then calculate the expected angle for the “sea” states (“sea.angle”)

using momentuHMM:::distAngle:

use prepData to calculate colony distance covariate ('sea.angle')

colony <- data.frame(x = -3.1, y = 59.12)

coordinates(colony) <- c("x", "y")

proj4string(colony) <- oldProj

colony <- as.matrix(as.data.frame(spTransform(colony, newProj)))

rownames(colony) <- "colony"

colony_dist <- prepData(raw_data, coordNames = c("Longitude","Latitude"),

centers = colony)

calculate "sea" mean angle covariate

sea.angle <- NULL

for(id in unique(colony_dist$ID)) {
idat <- subset(colony_dist,ID==id)

nbSubObs <- length(which(colony_dist$ID==id))

max_dist <- as.numeric(idat[which.max(idat$colony.dist),c("x","y")])

max_angle <- momentuHMM:::distAngle(colony,colony,max_dist)[2]

sea.angle <- c(sea.angle, rep(max_angle,nbSubObs))

}
raw_data$sea.angle <- sea.angle

Next we calculate the time since leaving colony covariate (“time”):

calculate time since left colony covariate ('time')

time <- aInd <- NULL

for(id in unique(raw_data$ID)) {
idInd <- which(raw_data$ID==id)

aInd <- c(aInd,idInd[1])

nbSubObs <- length(idInd)

time <- c(time, (1:nbSubObs)/nbSubObs)

}
raw_data$time <- time

To complete our data preparation, we convert the nearest fishing vessel data to the

centriods argument format and use prepData to calculate step lengths, turn angles,

and our “sea”, “boat”, and “colony” covariates:

69

get boat data into centroids argument format

boat_data <- list(boat=data.frame(Date = raw_data$Date,

x = raw_data$Boat_Longitude,

y = raw_data$Boat_Latitude))

format and merge all data and covariates for analysis

fulmar_data <- prepData(raw_data, coordNames = c("Longitude","Latitude"),

centers = colony,

centroids = boat_data,

covNames = "time",

angleCovs = "sea.angle")

momentuHMM doesn't like data streams and covariates to have same name,

so create identical data column with different name

fulmar_data$d <- fulmar_data$boat.dist

standarize boat.dist covariate

fulmar_data$boat.dist <- scale(fulmar_data$boat.dist)

Note that we use the centers argument for the colony (because its location is

static) and the centroids argument for the nearest fishing vessel (because its location

is dynamic).

Now that we’ve formatted the data, we’re ready to specify the 6-state HMM. Using

10 min time steps, Pirotta et al. (2018) included three data streams in their model: step

length (“step”), turn angle (“angle”), and distance to nearest boat (“d”). These were

respectively modelled using Weibull, wrapped Cauchy, and log-normal distributions:

nbStates <- 6

stateNames <- c("seaARS", "seaTr",

"boatARS", "boatTr",

"colonyARS", "colonyTr")

dist <- list(step = "weibull",

angle = "wrpcauchy",

d = "lnorm")

Similar to the harbour seal example (section 3.7), Pirotta et al. (2018) used rela-

tional parameter constraints that can be specified in momentuHMM using pseudo-design

matrices:

70

specify data stream probability distribution parameter constraints

stepDM <- matrix(c(1,0,0,0,

0,1,0,0,

1,0,0,0,

0,1,0,0,

1,0,0,0,

0,1,0,0,

0,0,1,0,

0,0,1,1,

0,0,1,0,

0,0,1,1,

0,0,1,0,

0,0,1,1),2*nbStates,4,byrow=TRUE,

dimnames=list(c(paste0("shape_",1:nbStates),

paste0("scale_",1:nbStates)),

c("shape:ARS","shape:Tr",

"scale:(Intercept)","scale:Tr")))

constrain scale parameters such that Tr > ARS

stepworkBounds <- matrix(c(-Inf,Inf,

-Inf,Inf,

-Inf,Inf,

0,Inf),ncol(stepDM),2,byrow=TRUE,

dimnames=list(colnames(stepDM),c("lower","upper")))

include trip-level effects on angle mean concentration parameter

nbTrips <- length(unique(fulmar_data$ID))

angleDM <- matrix(c("sea.angle",0,0,0,0,rep(0,2*nbTrips),

"sea.angle",0,0,0,0,rep(0,2*nbTrips),

0,"boat.angle",0,0,0,rep(0,2*nbTrips),

0,"boat.angle",0,0,0,rep(0,2*nbTrips),

0,0,"colony.angle",0,0,rep(0,2*nbTrips),

0,0,"colony.angle",0,0,rep(0,2*nbTrips),

0,0,0,1,0,paste0("ID",1:nbTrips),rep(0,nbTrips),

0,0,0,1,1,paste0("ID",1:nbTrips),paste0("ID",1:nbTrips),

0,0,0,1,0,rep(0,2*nbTrips),

0,0,0,1,1,rep(0,2*nbTrips),

0,0,0,1,0,rep(0,2*nbTrips),

0,0,0,1,1,rep(0,2*nbTrips)),2*nbStates,3+2+2*nbTrips,byrow=TRUE,

dimnames=list(c(paste0("mean_",1:nbStates),

paste0("concentration_",1:nbStates)),

c("mean:sea","mean:boat","mean:colony",

71

"concentration:(Intercept)","concentration:Tr",

paste0("concentration:ID",1:nbTrips,":(Intercept)"),

paste0("concentration:ID",1:nbTrips,":Tr"))))

constrain concentration parameters such that Tr > ARS

angleworkBounds <- matrix(c(-Inf,Inf,

-Inf,Inf,

-Inf,Inf,

-Inf,Inf,

0,Inf,

rep(c(-Inf,Inf),nbTrips),

rep(c(0,Inf),nbTrips)),ncol(angleDM),2,byrow=TRUE,

dimnames=list(colnames(angleDM),c("lower","upper")))

dDM <- matrix(c(1,1,0,0,

1,1,0,0,

1,0,0,0,

1,0,0,0,

1,1,0,0,

1,1,0,0,

0,0,1,1,

0,0,1,1,

0,0,1,0,

0,0,1,0,

0,0,1,1,

0,0,1,1),2*nbStates,4,byrow=TRUE,

dimnames=list(c(paste0("location_",1:nbStates),

paste0("scale_",1:nbStates)),

c("location:(Intercept)","location:noboat",

"scale:(Intercept)","scale:noboat")))

constrain location and scale parameters such that sea and colony > boat

dworkBounds <- matrix(c(-Inf,Inf,

0,Inf,

-Inf,Inf,

0,Inf),ncol(dDM),2,byrow=TRUE,

dimnames=list(colnames(dDM),c("lower","upper")))

DM <- list(step = stepDM, angle = angleDM, d = dDM)

workBounds <- list(step = stepworkBounds,

angle = angleworkBounds,

72

d = dworkBounds)

To complete our model specification, we use the toState special function to model

transitions to the “boat” and “colony” states as a function of distance to nearest fishing

vessel (“boat.dist”) and time since leaving colony (“time”), respectively. Following

Pirotta et al. (2018), we will use the knownStates argument to fix the initial state to

“sea transit”. We will also use the fixPar argument to fix the initial state probabilities

(because we are assuming these are known) and, as in section 3.6, constrain the model

to a biased random walk by fixing the mean angle working scale parameters to a large

positive value:

state transition formula similar to Pirotta et al

formula <- ~ toState3(boat.dist) + toState4(boat.dist) +

toState5(time) + toState6(time)

specify knownStates

Priotta et al assumed all animals start in state 2 ('seaTr')

knownStates <- rep(NA,nrow(fulmar_data))

knownStates[aInd] <- 2

fix delta_2 = 1 because assuming initial state is known for each track

fixPar <- list(delta=c(100,rep(0,nbStates-2)))

fixPar$delta <- exp(c(0,fixPar$delta))/sum(exp(c(0,fixPar$delta)))

Constrain model to BRW (instead of BCRW)

fixPar$angle <- c(rep(1.e+7, 3), rep(NA, 2+2*nbTrips))

Lastly, we used the betaCons argument to impose similar constraints as Pirotta et al.

(2018) for the transition probability parameters. We accomplish this by using betaCons

to set the transition probability working parameter intercept terms equal among the

three “ARS” states and the three “transit” states. We also use betaCons to constrain

the effects of ‘boat.dist’ and ‘time’ to be identical for each of the two movement modes

(“ARS” and “transit”) within each of the three biased movement states (“sea”, “boat”,

and “colony”). betaCons must be a matrix of the same dimension as beta0 and be

composed of integers, where each beta working parameter is sequentially indexed in a

column-wise fashion. Equality constraints can then be incorporated by having param-

eters share the same index. In this example we have:

73

betaCons

1 -> 2 1 -> 3 1 -> 4 1 -> 5 1 -> 6 2 -> 1 2 -> 3 2 -> 4 2 -> 5

(Intercept) 1 4 1 4 1 16 16 22 16

boat.dist 2 5 5 11 14 17 5 5 26

time 3 6 9 12 12 18 21 24 12

2 -> 6 3 -> 1 3 -> 2 3 -> 4 3 -> 5 3 -> 6 4 -> 1 4 -> 2 4 -> 3

(Intercept) 22 4 1 1 4 1 16 22 16

boat.dist 29 32 35 38 41 44 47 50 38

time 12 33 36 39 42 42 48 51 54

4 -> 5 4 -> 6 5 -> 1 5 -> 2 5 -> 3 5 -> 4 5 -> 6 6 -> 1 6 -> 2

(Intercept) 16 22 4 1 4 1 1 16 22

boat.dist 56 59 62 65 68 68 74 77 80

time 42 42 63 66 69 72 75 78 81

6 -> 3 6 -> 4 6 -> 5

(Intercept) 16 22 16

boat.dist 68 68 89

time 84 87 75

Again, betaCons constrains any of the transition probability matrix working parameters

with the same index to be equal to one another. For example, all of the intercept terms

indexed by a ‘1’ (1 → 2, 1 → 4, 1 → 6, 3 → 2, 3 → 4, 3 → 6, 5 → 2, 5 → 4,

and 5 → 6) are equal, and these terms correspond to the transitions from the “ARS”

movement mode (states 1, 3, and 5) to the “transit” movement mode (states 2, 4, and

6). Similarly, all of the intercept terms indexed by a ‘16’ are equal and correspond to

the transitions from the “transit” movement mode to the “ARS” movement mode. For

further details on the betaCons argument, see the fitHMM help file and the northern

fulmar example code in the “vignettes” source directory.

Now we are ready to fit our 6-state HMM:

m2 <- fitHMM(fulmar_data, nbStates, dist,

Par0 = Par0$Par, beta0 = Par0$beta0,

formula = formula,

estAngleMean = list(angle = TRUE),

circularAngleMean = list(angle = TRUE),

DM = DM, workBounds = workBounds, betaCons = betaCons,

fixPar = fixPar, knownStates = knownStates,

stateNames = stateNames)

With decent starting values, this model required about 2 min to fit on a standard

desktop computer (macOS El Capitan, 2.8 GHz Intel Core i7, 16 GB RAM). For com-

74

parison, Pirotta et al. (2018) required about 18 hr to fit their Bayesian model using

MCMC (2.9 GHz Intel Core i7, 16 GB RAM).

We can compare the estimated activity budgets with those of Pirotta et al. (2018)

using the timeInStates function:

timeInStates(m2)

seaARS seaTr boatARS boatTr colonyARS colonyTr

1 0.2582469 0.1687088 0.1705938 0.06503299 0.1677663 0.1696513

Pirotta et al. (2018) estimated 0.28 (“seaARS”), 0.20 (“seaTr”), 0.18 (“boatARS”), 0.06

(“boatTr”), 0.12 (“colonyARS”), and 0.16 (“colonyTr”). While these are very similar,

there a handful of state assignments that differ between the analyses. These differences

could be attributable to several factors, including: 1) the use of informative priors in the

Bayesian analysis of Pirotta et al. (2018); 2) our use of fixed trip-level effects on the “sea”

state turn angle concentration parameters; and 3) Pirotta et al. (2018) assumed the state

transition probability covariates (“boat.dist” and “time”) only affected the movement

direction states (“sea”, “boat”, “colony”), but in our momentuHMM implementation the

covariates can affect state transitions for both the movement direction (“sea”, “boat”,

“colony”) and the movement mode (“ARS”, “transit”).

We can also examine activity budgets by individual bird (which are indexed in the

raw data “birdID” column), where it is clear that the first 3 individuals tended to spend

a larger proportion of their foraging trips in the “boat” states:

timeInStates(m2, by = "birdID")

birdID seaARS seaTr boatARS boatTr colonyARS colonyTr

1 1 0.35564854 0.117154812 0.22594142 0.11297071 0.09623431 0.09205021

2 2 0.14102564 0.134615385 0.28205128 0.10256410 0.25641026 0.08333333

3 3 0.08333333 0.269607843 0.35294118 0.06862745 0.04411765 0.18137255

4 4 0.49019608 0.196078431 0.00000000 0.04575163 0.05882353 0.20915033

5 5 0.61475410 0.008196721 0.00000000 0.00000000 0.30327869 0.07377049

6 6 0.00000000 0.235294118 0.05882353 0.02673797 0.32085561 0.35828877

Finally, we can create a plot similar to Pirotta et al. (2018) using the plotSat

function (Figure 12):

75

plotSat(m2, zoom = 7, shape = c(17,1,17,1,17,1), size = 2,

col = rep(c("#E69F00", "#56B4E9", "#009E73"), each = 2),

stateNames = c("sea ARS", "sea Transit",

"boat ARS", "boat Transit",

"colony ARS", "colony Transit"),

projargs = newProj, ask = FALSE)

Figure 12. Seven northern fulmar tracks, colored by the most likely state sequence.

3.9 Pilot whales

Here we demonstrate how to include individual heterogeneity in state-switching dynam-

ics via discrete-valued random effects by fitting the 4-state (“exploratory”, “foraging”,

“crowded”, “directed”) mixed HMM for long-finned pilot whales described in Isojunno

et al. (2017). The pilot whale data consist of 11 data streams collected from 15 indi-

viduals, and, as usual, we must first prepare the data for fitHMM using prepData. Let’s

summarize our prepared data using the summary function:

76

summary(pilotData, dataNames=names(pilotData)[-1])

HMM data for 15 individuals:

##

gm08_150c -- 156 observations

gm08_154d -- 142 observations

gm08_159a -- 192 observations

gm09_137b -- 152 observations

gm09_138a -- 223 observations

gm09_156b -- 254 observations

gm10_000a -- 119 observations

gm10_143a -- 146 observations

gm10_152b -- 50 observations

gm10_157b -- 130 observations

gm10_158d -- 148 observations

gm13_137a -- 144 observations

gm13_149a -- 88 observations

gm13_169a -- 190 observations

gm14_180a -- 180 observations

##

##

Data summaries:

##

dive.dur dive.depth GR.speed2 dive.pitchvar2

Min. : 0.14 Min. : 0.86 Min. :0.025 Min. :0.010

1st Qu.: 0.64 1st Qu.: 5.36 1st Qu.:0.838 1st Qu.:0.042

Median : 0.81 Median : 7.08 Median :1.272 Median :0.070

Mean : 1.40 Mean : 26.36 Mean :1.367 Mean :0.100

3rd Qu.: 1.41 3rd Qu.: 11.73 3rd Qu.:1.732 3rd Qu.:0.121

Max. :13.75 Max. :617.37 Max. :8.824 Max. :0.673

NA's :892 NA's :142

breath.headchange GR.size GR.tight dive.CS.pres dive.SS.pres

Min. :-3.12587 Min. : 0 Min. :0.00 Min. :0.0 Min. :0.00

1st Qu.:-0.19089 1st Qu.: 6 1st Qu.:1.00 1st Qu.:0.0 1st Qu.:0.00

Median : 0.00066 Median : 9 Median :1.00 Median :1.0 Median :1.00

Mean :-0.00407 Mean :11 Mean :0.82 Mean :0.6 Mean :0.56

3rd Qu.: 0.18903 3rd Qu.:13 3rd Qu.:1.00 3rd Qu.:1.0 3rd Qu.:1.00

Max. : 3.05424 Max. :79 Max. :1.00 Max. :1.0 Max. :1.00

NA's :261 NA's :665 NA's :1128 NA's :905 NA's :905

presurf postsurf

Min. :0.00 Min. :0.00

1st Qu.:0.00 1st Qu.:0.00

Median :1.00 Median :1.00

77

Mean :0.74 Mean :0.74

3rd Qu.:1.00 3rd Qu.:1.00

Max. :1.00 Max. :1.00

NA's :15 NA's :15

After specifying the data stream probability distributions and starting values for

the parameters (based on those reported by Isojunno et al. 2017), let’s first fit the null

model with no discrete-valued individual-level random effects on the state-switching

dynamics:

11 data streams

dist <- list(dive.dur = "weibull",

dive.depth = "gamma",

GR.speed2 = "gamma",

dive.pitchvar2 = "beta",

breath.headchange = "vm",

GR.size = "pois",

GR.tight = "bern",

dive.CS.pres = "bern",

dive.SS.pres = "bern",

presurf = "bern",

postsurf = "bern")

initial values

Par0 <- list(dive.dur = c(1.9, 2.72, 1.64, 4.21,

1.3, 8.14, 1.53, 0.79),

dive.depth = c(10.23, 315.91, 10.74, 5.51,

4.93, 233.12, 6.32, 1.91),

GR.speed2 = c(1.15, 1.32, 1.36, 1.57,

0.66, 0.51, 0.77, 0.76),

dive.pitchvar2 = c(2.21, 2.88, 1.82, 3.18,

17.94, 6.04, 16.06, 55.36),

breath.headchange = c(3.07, 5.65, 2.64, 18.02),

GR.size = c(6, 7.39, 20.39, 9.52),

GR.tight = c(0.89, 0.66, 0.76, 0.81),

dive.CS.pres = c(0.76, 0.99, 0.41, 0.47),

dive.SS.pres = c(0.72, 0.98, 0.39, 0.41),

presurf = c(0.76, 0.99, 0.71, 0.71),

postsurf = c(0.81, 0.96, 0.72, 0.66))

beta0 <- matrix(c(-2.38, -3.86, -1.22,

78

0.21, -1.6, -0.47,

-3.56, -4.15, -2.29,

-1.17, -3.05, -2.54),nrow=1)

stateNames <- c("exploratory","foraging","crowded","directed")

Isojunno et al. (2017) found that model selection criteria favored models that assume

the initial distribution is the stationary distribution, so we’ll set stationary=TRUE:

fit model with single mixture on TPM

fitmix1 <- fitHMM(pilotData, nbStates=4, dist=dist,

Par0=Par0, beta0=beta0,

stationary=TRUE,

stateNames=stateNames,

nlmPar=list(hessian=FALSE))

fitmix1

Value of the maximum log-likelihood: -18510.4

##

##

dive.dur parameters:

exploratory foraging crowded directed

shape 1.895587 2.719570 1.640040 4.2099390

scale 1.301088 8.142114 1.529318 0.7911992

##

dive.depth parameters:

exploratory foraging crowded directed

mean 10.221159 315.7408 10.752753 5.507151

sd 4.920867 233.2394 6.325075 1.908221

##

GR.speed2 parameters:

exploratory foraging crowded directed

mean 1.1469499 1.3170625 1.36225 1.5706933

sd 0.6602282 0.5121064 0.77157 0.7628831

##

dive.pitchvar2 parameters:

79

exploratory foraging crowded directed

shape1 2.205733 2.876755 1.823291 3.186465

shape2 17.948930 6.036487 16.067474 55.491769

##

breath.headchange parameters:

exploratory foraging crowded directed

mean 0.000000 0.000000 0.000000 0.00000

concentration 3.068759 5.653926 2.644184 18.04806

##

GR.size parameters:

exploratory foraging crowded directed

lambda 5.996763 7.392536 20.38838 9.522725

##

GR.tight parameters:

exploratory foraging crowded directed

prob 0.8885557 0.6629627 0.7609689 0.8072405

##

dive.CS.pres parameters:

exploratory foraging crowded directed

prob 0.7630851 0.9892991 0.4077435 0.4703789

##

dive.SS.pres parameters:

exploratory foraging crowded directed

prob 0.7167555 0.9789121 0.3955766 0.4115657

##

presurf parameters:

exploratory foraging crowded directed

prob 0.76011 0.9924097 0.70787 0.7068425

##

postsurf parameters:

exploratory foraging crowded directed

prob 0.8081057 0.9619604 0.7164094 0.6568226

##

Regression coeffs for the transition probabilities:

80

1 -> 2 1 -> 3 1 -> 4 2 -> 1 2 -> 3 2 -> 4

(Intercept) -2.3725 -3.871793 -1.230078 0.2005482 -1.623498 -0.4895434

3 -> 1 3 -> 2 3 -> 4 4 -> 1 4 -> 2 4 -> 3

(Intercept) -3.543939 -4.120499 -2.272679 -1.163733 -3.035013 -2.539986

##

Transition probability matrix:

exploratory foraging crowded directed

exploratory 0.71106663 0.06630503 0.01480512 0.20782321

foraging 0.40303342 0.32979502 0.06503813 0.20213342

crowded 0.02516983 0.01414110 0.87095004 0.08973904

directed 0.21699916 0.03340193 0.05479726 0.69480165

##

Initial distribution:

exploratory foraging crowded directed

0.36640726 0.05854032 0.22161529 0.35343713

(note that we’ve set the nlmPar option hessian=FALSE simply to speed up the compile

time for this vignette).

Now we’ll fit a model withK = 2 mixtures of discrete-valued individual-level random

effects by setting mixtures=2, but first we’ll set some starting values based on the null

model (using getPar0) and check our model specification (using checkPar0):

Par0_mix2 <- getPar0(fitmix1, mixtures=2)

Par0_mix2$beta$beta[1,] <- c(-2.26, -3.93, -0.58,

0.03, -2.25, -0.26,

-3.38, -4.79, -2.82,

-1.06, -3.3, -3.43)

Par0_mix2$beta$beta[2,] <- c(-2.51, -3.32, -2.63,

0.03, -1.26, -0.12,

-96.8, -3.62, -1.75,

-1.76, -2.14, -1.38)

Par0_mix2$beta$pi <- c(0.73, 0.27)

Note that because mixtures is > 1, the starting values for beta0 must now be speci-

fied as a list with elements named beta (containing the starting values for the t.p.m.

parameters) and/or pi (containing the starting values for the mixture probability pa-

rameters).

81

check model specification

checkPar0(pilotData, nbStates=4, dist=dist,

Par0=Par0_mix2$Par, beta0=Par0_mix2$beta,

stationary=TRUE,

mixtures=2,

stateNames=stateNames)

##

dive.dur parameters:

exploratory foraging crowded directed

shape 1.895587 2.719570 1.640040 4.2099390

scale 1.301088 8.142114 1.529318 0.7911992

##

dive.depth parameters:

exploratory foraging crowded directed

mean 10.221159 315.7408 10.752753 5.507151

sd 4.920867 233.2394 6.325075 1.908221

##

GR.speed2 parameters:

exploratory foraging crowded directed

mean 1.1469499 1.3170625 1.36225 1.5706933

sd 0.6602282 0.5121064 0.77157 0.7628831

##

dive.pitchvar2 parameters:

exploratory foraging crowded directed

shape1 2.205733 2.876755 1.823291 3.186465

shape2 17.948930 6.036487 16.067474 55.491769

##

breath.headchange parameters:

exploratory foraging crowded directed

concentration 3.068759 5.653926 2.644184 18.04806

##

GR.size parameters:

exploratory foraging crowded directed

lambda 5.996763 7.392536 20.38838 9.522725

##

GR.tight parameters:

82

exploratory foraging crowded directed

prob 0.8885557 0.6629627 0.7609689 0.8072405

##

dive.CS.pres parameters:

exploratory foraging crowded directed

prob 0.7630851 0.9892991 0.4077435 0.4703789

##

dive.SS.pres parameters:

exploratory foraging crowded directed

prob 0.7167555 0.9789121 0.3955766 0.4115657

##

presurf parameters:

exploratory foraging crowded directed

prob 0.76011 0.9924097 0.70787 0.7068425

##

postsurf parameters:

exploratory foraging crowded directed

prob 0.8081057 0.9619604 0.7164094 0.6568226

##

Mixture probabilities (pi):

mix1 mix2

0.73 0.27

##

Regression coeffs for the transition probabilities (beta):

--

1 -> 2 1 -> 3 1 -> 4 2 -> 1 2 -> 3 2 -> 4 3 -> 1 3 -> 2 3 -> 4

(Intercept)_mix1 -2.26 -3.93 -0.58 0.03 -2.25 -0.26 -3.38 -4.79 -2.82

(Intercept)_mix2 -2.51 -3.32 -2.63 0.03 -1.26 -0.12 -96.80 -3.62 -1.75

4 -> 1 4 -> 2 4 -> 3

(Intercept)_mix1 -1.06 -3.30 -3.43

(Intercept)_mix2 -1.76 -2.14 -1.38

We can see above that by setting mixtures=2 we now have K = 2 sets of state

transition probability matrix parameters, each suffixed by a mixture label (_mix1 or

_mix2). We also now have K = 2 mixture probability parameters (π), where the first

(π1) corresponds to parameters suffixed with _mix1 and the second (π2) corresponds to

83

parameters suffixed with _mix2. Now let’s fit the K = 2 mixture model from Isojunno

et al. (2017):

fitmix2 <- fitHMM(pilotData, nbStates=4, dist=dist,

Par0=Par0_mix2$Par, beta0=Par0_mix2$beta,

stationary=TRUE,

mixtures=2,

stateNames=stateNames,

nlmPar=list(hessian=FALSE))

Now let’s fit a model with K = 3 mixtures by setting some starting values with the

help of getPar0:

Par0_mix3 <- getPar0(fitmix2, mixtures=3)

Par0_mix3$beta$beta[1,] <- c(-2.15, -4.31, -1.09,

0.28, -1.88, -0.3,

-3.5, -4.71, -3.11,

-0.68, -2.49, -2.6)

Par0_mix3$beta$beta[2,] <- c(-2.5, -2.47, 0.63,

-17.22, -13.18, 0.59,

-3.92, -13.96, -2.27,

-1.25, -3.57, -3.75)

Par0_mix3$beta$beta[3,] <- c(-2.71, -3.48, -3.01,

-0.35, -1.12, -0.1,

-96.8, -2.98, -1.53,

-2.29, -2.07, -1.55)

Par0_mix3$beta$pi <- c(0.4, 0.4, 0.2)

and then calling fitHMM with mixtures=3:

fitmix3 <- fitHMM(pilotData, nbStates=4, dist=dist,

Par0=Par0_mix3$Par, beta0=Par0_mix3$beta,

stationary=TRUE,

mixtures=3,

stateNames=stateNames,

nlmPar=list(hessian=FALSE))

===

Fitting HMM with 4 states and 11 data streams

84

dive.dur ~ weibull(shape=~1, scale=~1)

dive.depth ~ gamma(mean=~1, sd=~1)

GR.speed2 ~ gamma(mean=~1, sd=~1)

dive.pitchvar2 ~ beta(shape1=~1, shape2=~1)

breath.headchange ~ vm(concentration=~1)

GR.size ~ pois(lambda=~1)

GR.tight ~ bern(prob=~1)

dive.CS.pres ~ bern(prob=~1)

dive.SS.pres ~ bern(prob=~1)

presurf ~ bern(prob=~1)

postsurf ~ bern(prob=~1)

##

Transition probability matrix formula: ~1

##

Initial distribution formula: stationary

##

Number of mixtures: 3

Mixture probability formula: ~1

===

DONE

fitmix3

Value of the maximum log-likelihood: -18445.14

##

##

dive.dur parameters:

exploratory foraging crowded directed

shape 1.975978 2.813776 1.648341 3.8522580

scale 1.422555 8.246565 1.520763 0.7864722

##

dive.depth parameters:

exploratory foraging crowded directed

mean 10.977415 322.5798 10.638125 5.769243

sd 5.427491 228.1005 6.314569 2.013745

85

##

GR.speed2 parameters:

exploratory foraging crowded directed

mean 1.1385507 1.3201513 1.3861439 1.5065078

sd 0.6663534 0.5203517 0.7776481 0.7581291

##

dive.pitchvar2 parameters:

exploratory foraging crowded directed

shape1 2.15122 3.028038 1.764795 2.524053

shape2 17.62926 6.225084 15.844942 37.637633

##

breath.headchange parameters:

exploratory foraging crowded directed

mean 0.000000 0.000000 0.000000 0.00000

concentration 2.768482 5.696489 2.629183 17.09466

##

GR.size parameters:

exploratory foraging crowded directed

lambda 5.672187 7.460572 20.48158 9.345636

##

GR.tight parameters:

exploratory foraging crowded directed

prob 0.9098293 0.6533947 0.7686185 0.7903651

##

dive.CS.pres parameters:

exploratory foraging crowded directed

prob 0.7618571 0.9892938 0.3923022 0.5248959

##

dive.SS.pres parameters:

exploratory foraging crowded directed

prob 0.7364702 0.9804547 0.3799649 0.4544787

##

presurf parameters:

exploratory foraging crowded directed

86

prob 0.748499 0.9922603 0.7107198 0.7227432

##

postsurf parameters:

exploratory foraging crowded directed

prob 0.8213494 0.9624941 0.7156723 0.6705817

##

Regression coeffs for the transition probabilities:

1 -> 2 1 -> 3 1 -> 4 2 -> 1 2 -> 3

(Intercept)_mix1 -2.152085 -4.306731 -1.0867497 0.2791947 -1.880898

(Intercept)_mix2 -2.498738 -2.469649 0.6277231 -17.2200002 -13.180019

(Intercept)_mix3 -2.714484 -3.475361 -3.0076135 -0.3548059 -1.124543

2 -> 4 3 -> 1 3 -> 2 3 -> 4 4 -> 1

(Intercept)_mix1 -0.29671906 -3.501065 -4.714406 -3.111360 -0.6813091

(Intercept)_mix2 0.58694161 -3.926036 -13.960064 -2.270529 -1.2524123

(Intercept)_mix3 -0.09724842 -96.800000 -2.975692 -1.531841 -2.2900315

4 -> 2 4 -> 3

(Intercept)_mix1 -2.488782 -2.599644

(Intercept)_mix2 -3.567966 -3.753564

(Intercept)_mix3 -2.073131 -1.549459

##

Mixture probabilities:

mix1 mix2 mix3

0.4018629 0.3980198 0.2001172

##

Transition probability matrix:

exploratory foraging crowded directed

exploratory_mix1 6.816492e-01 7.923599e-02 9.186948e-03 0.22992783

foraging_mix1 4.108636e-01 3.107742e-01 4.737849e-02 0.23098376

crowded_mix1 2.783618e-02 8.272980e-03 9.227895e-01 0.04110136

directed_mix1 3.041933e-01 4.990848e-02 4.467117e-02 0.60122702

exploratory_mix2 3.289318e-01 2.703446e-02 2.783241e-02 0.61620128

foraging_mix2 1.187207e-08 3.573367e-01 6.746335e-07 0.64266266

crowded_mix2 1.756192e-02 7.706355e-07 8.904877e-01 0.09194960

directed_mix2 2.136992e-01 2.109457e-02 1.752130e-02 0.74768494

exploratory_mix3 8.721443e-01 5.777009e-02 2.699344e-02 0.04309217

foraging_mix3 2.390740e-01 3.408966e-01 1.107235e-01 0.30930588

crowded_mix3 7.202219e-43 4.025737e-02 7.891729e-01 0.17056974

directed_mix3 7.035018e-02 8.739041e-02 1.475339e-01 0.69472552

87

##

Initial distribution:

exploratory foraging crowded directed

mix1 0.3870062 0.06849400 0.2553623 0.2891375

mix2 0.2012576 0.02880544 0.1502894 0.6196476

mix3 0.3234760 0.08566424 0.2940851 0.2967747

Based on our fitted model, we can calculate the probability of each individual being in

a particular mixture using the mixtureProbs function and the t.p.m. for each mixture

using the getTrProbs function:

round(mixtureProbs(fitmix3),4)

mix1 mix2 mix3

ID:gm08_150c 0.0000 1.0000 0e+00

ID:gm08_154d 0.0000 1.0000 0e+00

ID:gm08_159a 0.0000 1.0000 0e+00

ID:gm09_137b 1.0000 0.0000 0e+00

ID:gm09_138a 0.0000 0.0000 1e+00

ID:gm09_156b 1.0000 0.0000 0e+00

ID:gm10_000a 0.0000 0.0000 1e+00

ID:gm10_143a 1.0000 0.0000 0e+00

ID:gm10_152b 0.0276 0.9724 0e+00

ID:gm10_157b 0.0000 0.0000 1e+00

ID:gm10_158d 0.0006 0.9994 0e+00

ID:gm13_137a 1.0000 0.0000 0e+00

ID:gm13_149a 1.0000 0.0000 0e+00

ID:gm13_169a 0.9991 0.0000 9e-04

ID:gm14_180a 0.0000 1.0000 0e+00

calculate state transition probabilities for each mixture

trProbs3 <- getTrProbs(fitmix3, covIndex=1)

mixture 1

round(trProbs3[[1]][,,1],2)

exploratory foraging crowded directed

exploratory 0.68 0.08 0.01 0.23

foraging 0.41 0.31 0.05 0.23

crowded 0.03 0.01 0.92 0.04

directed 0.30 0.05 0.04 0.60

88

mixture 2

round(trProbs3[[2]][,,1],2)

exploratory foraging crowded directed

exploratory 0.33 0.03 0.03 0.62

foraging 0.00 0.36 0.00 0.64

crowded 0.02 0.00 0.89 0.09

directed 0.21 0.02 0.02 0.75

mixture 3

round(trProbs3[[3]][,,1],2)

exploratory foraging crowded directed

exploratory 0.87 0.06 0.03 0.04

foraging 0.24 0.34 0.11 0.31

crowded 0.00 0.04 0.79 0.17

directed 0.07 0.09 0.15 0.69

And let’s do the same with K = 4:

fitmix4 <- fitHMM(pilotData, nbStates=4, dist=dist,

Par0=Par0_mix4$Par, beta0=Par0_mix4$beta,

stationary=TRUE,

mixtures=4,

stateNames=stateNames,

nlmPar=list(hessian=FALSE))

For comparison to the null and random effects models, let’s also fit a model including

individual-level fixed effects:

Par0_fix <- getPar0(fitmix4,formula=~0+ID,mixtures=1)

fitfix <- fitHMM(pilotData, nbStates=4, dist=dist,

formula = ~0+ID, stationary=TRUE,

Par0=Par0_fix$Par, beta0=Par0_fix$beta,

stateNames=stateNames,

nlmPar=list(hessian=FALSE))

Based on AIC, we find overwhelming support for the discrete-valued individual-level

random effects model with K = 3 mixtures:

89

AIC(fitmix1,fitmix2,fitmix3,fitmix4,fitfix)

Model AIC

1 fitmix3 37086.29

2 fitmix4 37098.24

3 fitfix 37124.75

4 fitmix2 37132.58

5 fitmix1 37164.80

AICweights(fitmix1,fitmix2,fitmix3,fitmix4,fitfix)

Model weight

1 fitmix3 9.974679e-01

2 fitmix4 2.532142e-03

3 fitfix 4.425936e-09

4 fitmix2 8.825442e-11

5 fitmix1 8.904782e-18

3.10 Hierarchical HMMs

As we already noted in section 2.5, HMMs with hierarchical structures allow for data

streams and/or state transitions to occur at multiple regular time scales. Leos-Barajas

et al. (2017) provide two examples where state transitions are allowed to occur at both

“coarse” and “fine” time scales, while Adam et al. (2019) provide two examples where

both data streams and state transitions occur at both “coarse” and “fine” time scales.

Here we demonstrate how all four of these examples can be fitted in momentuHMM.

The key to fitting (and simulating) hierarchical hidden Markov models (HHMMs) in

momentuHMM is specifying certain fitHMM (and simHierData) arguments hierarchically

using the data.tree package (Glur 2018). For HHMMs, instead of simply specifying

the number of states (nbStates), distributions (dist), and a single t.p.m. (formula) or

initial distribution (formulaDelta) formula, the hierStates argument specifies the hi-

erarchical nature of the states, the hierDist argument specifies the hierarchical nature

of the data streams, and the hierFormula or hierFormulaDelta arguments specify a

t.p.m. or initial distribution formula for each level of the hierarchy. All are specified as

Node objects from the data.tree package. In the examples below, we focus on how to

implement these HHMMs in momentuHMM and refer readers to Leos-Barajas et al. (2017)

and Adam et al. (2019) for specific details about the data sets and the particular models

90

being fitted.

3.10.1 Harbor porpoise

In order to replicate the harbor porpoise HHMM example from Leos-Barajas et al.

(2017) in momentuHMM, we must first use prepData to prepare our hierarchical data.

This requires an additional field named level to be included in data that identifies

the level of the hierarchy for each observation. These levels must be ordered from

the coarsest to finest time scales, and must also indicate the initial observations at

each level of the hierarchy (except for the coarsest level). For example, if there are

M = 3 time scales in the hierarchy (e.g. “coarse”, “medium”, and “fine” scales),

then the level field must include 2M − 1 = 5 ordered factors: “1” (corresponding to

coarse-scale observations), “2i” (initial medium-scale observations), “2” (medium-scale

observations), “3i” (initial fine-scale observations), and “3” (fine-scale observations).

Regardless of the number of levels in the hierarchy, note that for each individual the

level field for the first observation must always be “1”, the second obervation must

always be “2i”, the third observation must always be “2”, and the last observation

must always be from level M . Also note that every “1” observation must be followed

by “2i”, every “2i” must be followed by one or more “2”, every “3i” must be preceded

by “2” and followed by one or more “3”, and, after the first observation, every “1”

must be preceded by an observation from level M .

In the harbor porpoise example from Leos-Barajas et al. (2017), there are only

M = 2 levels in the hierarchy so the 2M − 1 = 3 ordered level factors are “1” (coarse

level), “2i” (initial fine level), and “2” (fine level). After downloading the data, we can

manually add the level field to our data frame as follows:

load harbor porpoise data from Leos-Barajas et al

load(url(paste0("https://static-content.springer.com/esm/",

"art%3A10.1007%2Fs13253-017-0282-9/MediaObjects/",

"13253_2017_282_MOESM2_ESM.rdata")))

convert date_time to POSIX

data <- lapply(data,function(x)

{x$date_time <- as.POSIXct(x$date_time,tz="UTC"); x})

porpoiseData <- NULL

for(i in 1:length(data)){

91

coarseInd <- data.frame(date_time=as.POSIXct(format(data[[i]]$date_time[1],

format="%Y-%m-%d %H:%M"),

tz="UTC"),

level=c("1","2i"),

dive_duration=NA,

maximum_depth=NA,

dive_wiggliness=NA)

tmp <- rbind(coarseInd,data.frame(data[[i]],level="2"))

porpoiseData <- rbind(porpoiseData,tmp)

}

head(porpoiseData)

date_time level dive_duration maximum_depth dive_wiggliness

1 2015-11-02 14:43:00 1 NA NA NA

2 2015-11-02 14:43:00 2i NA NA NA

3 2015-11-02 14:43:11 2 28 8.19 5.50

4 2015-11-02 14:44:08 2 18 8.19 3.00

5 2015-11-02 14:44:35 2 14 6.19 5.25

6 2015-11-02 14:44:58 2 17 7.44 2.50

By including the level field, we will be able to specify when the coarse-scale state

switching can occur (i.e., a coarse scale t.p.m. will be used when level=1), the start of

each fine-scale interval (i.e. a fine-scale initial distribution will be used when level=2i),

and when the fine-scale state switching can occur (i.e. a fine scale t.p.m. will be used

when level=2).

Now that we have labeled each observation in our data with a level factor, we can

prepare our HHMM data using prepData:

prepare hierarchical data

porpoiseData <- prepData(data = porpoiseData,

coordNames = NULL,

hierLevels = c("1", "2i", "2"))

summarize prepared data

summary(porpoiseData, dataNames = names(porpoiseData)[-1])

Hierarchical HMM data for 1 individual:

##

Animal1 -- 8135 observations

##

92

##

Data summaries:

##

date_time level dive_duration maximum_depth

Min. :2015-11-02 14:43:00.00 1 : 275 Min. : 1 Min. : 2.2

1st Qu.:2015-11-06 02:01:24.00 2i: 275 1st Qu.: 15 1st Qu.: 7.2

Median :2015-11-08 14:14:28.00 2 :7585 Median : 43 Median : 16.2

Mean :2015-11-08 11:59:48.86 Mean : 58 Mean : 22.2

3rd Qu.:2015-11-11 04:43:07.00 3rd Qu.: 90 3rd Qu.: 30.2

Max. :2015-11-14 00:58:50.00 Max. :248 Max. :169.4

NA's :550 NA's :550

dive_wiggliness

Min. : 0.0

1st Qu.: 3.8

Median : 15.0

Mean : 23.4

3rd Qu.: 36.0

Max. :253.5

NA's :562

For HHMMs, we must use the hierLevels argument to identify the ordered factor levels

that prepData can expect to find in the level field. When hierLevels is specified,

prepData assumes the data are intended for a HHMM analysis and assigns the classes

hierarchical and momentuHierHMMData to the returned object (and corresponding

methods for these classes will hereafter be used when calling functions such as fitHMM).

Because prepData assumes the level field is a factor with levels ordered according to

hierLevels, an error is returned if the order of hierLevels is not consistent with the

level field (or vice versa):

prepData(data = porpoiseData,

coordNames = NULL,

hierLevels = c("1", "2", "2i"))

Error in prepData.hierarchical(data = porpoiseData, coordNames = NULL,

: hierLevels must be ordered factors of the form:

’1’, ’2i’, ’2’, ..., ’Mi’, ’M’ where M is the number of levels in

the hierarchy

Note that because there are no location data in this example, we have set coordNames

93

to NULL. Also note that in this example there are no data streams observed at the coarse

time scale (level=1), but these could be easily included (if available; see sections 3.10.3

and 3.10.4). By definition there are no data streams observed at the initial fine scale

(level=2i), but covariates (if available) could be included here for modeling the fine-

scale initial distributions or state transition probabilities.

Now that our hierarchical data are prepared, we are ready to specify the HHMM.

We will start with the hierarchical nature of the states, which is specified using the

hierStates argument in fitHMM:

library(data.tree)

define hierarchical HMM

states 1-3 = coarse state 1 (nonforaging)

states 4-6 = coarse state 2 (foraging)

hierStates <- data.tree::Node$new("harbor porpoise HHMM states")

hierStates$AddChild(name="nonforaging")

hierStates$nonforaging$AddChild(name="nf1", state=1)

hierStates$nonforaging$AddChild(name="nf2", state=2)

hierStates$nonforaging$AddChild(name="nf3", state=3)

hierStates$AddChild(name="foraging")

hierStates$foraging$AddChild(name="f1", state=4)

hierStates$foraging$AddChild(name="f2", state=5)

hierStates$foraging$AddChild(name="f3", state=6)

plot(hierStates)

Here we can see that the coarse-scale “nonforaging” and “foraging” states are both

composed of three fine-scale states (Figure 13). Note that the Node attribute state

is required in hierStates and determines the index for each state in our HHMM.

Alternatively, we could specify the exact same Node as:

hierStates <- data.tree::as.Node(list(name="harbor porpoise HHMM states",

nonforaging=list(nf1=list(state=1),

nf2=list(state=2),

nf3=list(state=3)),

foraging=list(f1=list(state=4),

f2=list(state=5),

f3=list(state=6))))

94

Figure 13. Hierarchcial state structure in the harbor porpoise example.

The name for any of the “children” added to a node are user-specified and are akin

to the stateNames argument in fitHMM for a standard HMM. While these names are

arbitrary, the name and state attributes must be unique.

Next we will specify the hierarchical nature of the data streams for the hierDist

argument in fitHMM:

data stream distributions

level 1 = coarse scale (no data streams)

level 2 = fine scale (dive_duration, maximum_depth, dive_wiggliness)

hierDist <- data.tree::Node$new("harbor porpoise HHMM dist")

hierDist$AddChild(name="level1")

hierDist$AddChild(name="level2")

hierDist$level2$AddChild(name="dive_duration", dist="gamma")

hierDist$level2$AddChild(name="maximum_depth", dist="gamma")

hierDist$level2$AddChild(name="dive_wiggliness", dist="gamma")

plot(hierDist)

The Node attribute dist is required in hierDist and specifies the probability dis-

tribution for each data stream at each level of the hierarchy (Figure 14. In this case,

95

Figure 14. Hierarchcial data stream structure in the harbor porpoise example.

level1 (corresponding to coarse-scale observations with level=1) has no data streams,

and each of the data streams for level2 (corresponding to fine-scale observations with

level=2) is assigned a gamma distribution. The first level of the hierDist Node must

include a child for each level of the hierarchy, and the name for each child must be of

the form paste0("level",i) for i∈ 1, 2, . . . ,M , where M is the number of levels in

the hierarchy; in this case, M = 2 and the names for each of the children at the first

level of the hierDist Node must be level1 and level2. The children of these levels

must be “leaves” (i.e. they have no children), where the name attribute indicates the

data stream and the dist attribute indicates the probability distribution.

Leos-Barajas et al. (2017) did not include any covariates on the t.p.m. or initial

distribution for either level of the hierarchy, but, for demonstration purposes, here is

how we would use the hierFormula and hierFormulaDelta arguments to specify the

t.p.m. and initial distribution formula for each level of the hierarchy in fitHMM:

define hierarchical t.p.m. formula(s)

hierFormula <- data.tree::Node$new("harbor porpoise HHMM formula")

hierFormula$AddChild(name="level1", formula=~1)

hierFormula$AddChild(name="level2", formula=~1)

96

define hierarchical initial distribution formula(s)

hierFormulaDelta <- data.tree::Node$new("harbor porpoise HHMM formulaDelta")

hierFormulaDelta$AddChild(name="level1", formulaDelta=~1)

hierFormulaDelta$AddChild(name="level2", formulaDelta=~1)

The Node attribute formula (or formulaDelta) is required in hierFormula (or hierFormulaDelta)

and specifies the t.p.m. (or initial distribution) formula for each level of the hierarchy.

Each child in hierFormula or hierFormulaDelta must be a leaf with a name of the

form paste0("level",i) for i∈ 1, 2, . . . ,M , where M is the number of levels in the

hierarchy.

Leos-Barajas et al. (2017) assume the data stream probability distributions do not

depend on the coarse-scale state, so we can constrain the state-dependent parameters

for states 1 (“nf1”) and 4 (“f1”), states 2 (“nf2”) and 5 (“f2”), and states 3 (“nf3”) and

6 (“f3”) to be equal using the DM argument:

defining starting values

dd.mu0 = rep(c(5,30,100),hierStates$count)

dd.sigma0 = rep(c(5,15,40),hierStates$count)

md.mu0 = rep(c(5,15,40),hierStates$count)

md.sigma0 = rep(c(2,5,20),hierStates$count)

dw.mu0 = rep(c(2,10,40),hierStates$count)

dw.sigma0 = rep(c(2,10,20),hierStates$count)

dw.pi0 = rep(c(0.2,0.01,0.01),hierStates$count)

Par0 <- list(dive_duration=c(dd.mu0,dd.sigma0),

maximum_depth=c(md.mu0,md.sigma0),

dive_wiggliness=c(dw.mu0,dw.sigma0,dw.pi0))

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain fine-scale data stream distributions to be same

dw_DM <- matrix(cbind(kronecker(c(1,1,0,0,0,0),diag(3)),

kronecker(c(0,0,1,1,0,0),diag(3)),

kronecker(c(0,0,0,0,1,1),diag(3))),

nrow=nbStates*3,

ncol=9,

dimnames=list(c(paste0("mean_",1:nbStates),

paste0("sd_",1:nbStates),

paste0("zeromass_",1:nbStates)),

paste0(rep(c("mean","sd","zeromass"),each=3),

97

c("_14:(Intercept)",

"_25:(Intercept)",

"_36:(Intercept)"))))

DM <- list(dive_duration=dw_DM[1:(2*nbStates),1:6],

maximum_depth=dw_DM[1:(2*nbStates),1:6],

dive_wiggliness=dw_DM)

get initial parameter values for data stream probability distributions

Par <- getParDM(porpoiseData,hierStates=hierStates,hierDist=hierDist,

Par=Par0,DM=DM)

The (optional) last step for fitting this HHMM is specifying starting values for the

t.p.m. and initial distribution parameters for each level of the hierarchy. In this case,

we set them to “nudge” coarse state 1 (i.e., fine-scale states 1 − 3) to “nonforaging”

and coarse state 2 (i.e., fine-scale states 4− 6) to “foraging”:

initial values ('beta') for t.p.m. at each level of hierarchy

hierBeta <- data.tree::Node$new("harbor porpoise beta")

hierBeta$AddChild(name="level1",beta=matrix(c(-1, -1),1))

hierBeta$AddChild(name="level2")

hierBeta$level2$AddChild(name="nonforaging",beta=matrix(c(0,-1,1,0,1,1),1))

hierBeta$level2$AddChild(name="foraging",beta=matrix(c(-1,1,1,2,0,3),1))

initial values ('delta') for initial distribution at each level of hierarchy

hierDelta <- data.tree::Node$new("harbor porpoise delta")

hierDelta$AddChild(name="level1",delta=matrix(0,1))

hierDelta$AddChild(name="level2")

hierDelta$level2$AddChild(name="nonforaging",delta=matrix(c(30, 30),1))

hierDelta$level2$AddChild(name="foraging",delta=matrix(c(-6, 2),1))

The Node attribute beta (or delta) is required in hierBeta (or hierDelta) and spec-

ifies the starting values for the t.p.m. (or initial distribution) at each level of the

hierarchy. For each level of the hierarchy, these values are specified just as in beta0

(or delta0) for a standard HMM fitted with fitHMM. However, for HHMMs the start-

ing values in hierDelta must always be provided as a matrix on the working scale

(even if no covariates are included in hierFormulaDelta). Any additional arguments

pertaining to t.p.m. or initial distribution parameters (such as workBounds$beta,

betaCons, fixPar$beta, workBounds$delta, deltaCons, and fixPar$delta) must

98

also be specified as data.tree Nodes (with Node attributes workBounds, betaCons,

fixPar, workBounds, deltaCons, and fixPar, respectively).

Before fitting the HHMM, let’s first check that everything is in order using the

checkPar0 function:

check hierarchical model specification and parameters

checkPar0(porpoiseData,hierStates=hierStates,hierDist=hierDist,Par0=Par,

hierFormula=hierFormula,hierFormulaDelta=hierFormulaDelta,

DM=DM,hierBeta=hierBeta,hierDelta=hierDelta)

##

Regression coeffs for dive_duration parameters:

mean_14:(Intercept) mean_25:(Intercept) mean_36:(Intercept)

[1,] 1.609438 3.401197 4.60517

sd_14:(Intercept) sd_25:(Intercept) sd_36:(Intercept)

[1,] 1.609438 2.70805 3.688879

##

Regression coeffs for maximum_depth parameters:

mean_14:(Intercept) mean_25:(Intercept) mean_36:(Intercept)

[1,] 1.609438 2.70805 3.688879

sd_14:(Intercept) sd_25:(Intercept) sd_36:(Intercept)

[1,] 0.6931472 1.609438 2.995732

##

Regression coeffs for dive_wiggliness parameters:

mean_14:(Intercept) mean_25:(Intercept) mean_36:(Intercept)

[1,] 0.6931472 2.302585 3.688879

sd_14:(Intercept) sd_25:(Intercept) sd_36:(Intercept)

[1,] 0.6931472 2.302585 2.995732

zeromass_14:(Intercept) zeromass_25:(Intercept) zeromass_36:(Intercept)

[1,] -1.386294 -4.59512 -4.59512

##

--

Regression coeffs for the transition probabilities (beta):

--

------------------------- level1 -----------------------

1 -> 4 4 -> 1

I((level == "1") * 1) -1 -1

##

------------------------- level2 -----------------------

99

1 -> 2 1 -> 3 2 -> 2 2 -> 3 3 -> 2 3 -> 3

I((level == "2") * 1) 0 -1 1 0 1 1

##

4 -> 5 4 -> 6 5 -> 5 5 -> 6 6 -> 5 6 -> 6

I((level == "2") * 1) -1 1 1 2 0 3

##

--

##

--

Regression coeffs for the initial distribution (delta):

--

------------------------ level1 ------------------------

state 4

(Intercept) 0

##

------------------------ level2 ------------------------

state 2 state 3

I((level == "2i") * 1) 30 30

##

state 5 state 6

I((level == "2i") * 1) -6 2

##

--

Note that for HHMMs, the reference states for the t.p.m. are determined by the lowest

index for each state at the coarsest level in the hierarchy; in this case, the reference states

are state 1 for “nonforaging” and state 4 for “foraging”. This differs from standard

HMMs fitted with fitHMM (where the reference states can be user-specified with the

betaRef argument).

Since everything looks good, we’re now ready to fit our HHMM:

fit hierarchical HMM

hhmm <- fitHMM(data=porpoiseData,hierStates=hierStates,hierDist=hierDist,

hierFormula=hierFormula,hierFormulaDelta=hierFormulaDelta,

Par0=Par,hierBeta=hierBeta,hierDelta=hierDelta,

DM=DM,nlmPar=list(hessian=FALSE))

===

Fitting hierarchical HMM with 6 states and 3 data streams

100

dive duration ~ gamma(mean: custom, sd: custom)

maximum depth ~ gamma(mean: custom, sd: custom)

dive wiggliness ~ gamma(mean: custom, sd: custom, zeromass: custom)

##

Transition probability matrix formula: ~0 + I((level == "1") * 1) +

I((level == "2i") * 1) + I((level == "2") * 1)

##

Initial distribution formula: ~1

===

DONE

Before examining the output for our fitted HHMM, it’s worth noting here that when

data is a momentuHierHMMData object, fitHMM “shoehorns” the HHMM into a standard

HMM by constraining the t.p.m. and initial distribution according to the hierarchical

structure defined by hierStates. This is why the printed t.p.m. formula above may

look a little strange at first. The initial distribution formula printed above pertains

only to the initial distribution at the coarsest level of the hierarchy, and the initial

distributions for all other levels are imbedded in the t.p.m. Let’s look a little deeper:

hhmm$conditions$fixPar$beta

1 -> 2 1 -> 3 1 -> 4 1 -> 5 1 -> 6 2 -> 2 2 -> 3 2 -> 4

I((level == "1") * 1) -1e+10 -1e+10 NA -1e+10 -1e+10 -1e+10 -1e+10 NA

I((level == "2i") * 1) NA NA -1e+10 -1e+10 -1e+10 -1e+10 -1e+10 -1e+10

I((level == "2") * 1) NA NA -1e+10 -1e+10 -1e+10 NA NA -1e+10

2 -> 5 2 -> 6 3 -> 2 3 -> 3 3 -> 4 3 -> 5 3 -> 6 4 -> 1

I((level == "1") * 1) -1e+10 -1e+10 -1e+10 -1e+10 NA -1e+10 -1e+10 NA

I((level == "2i") * 1) -1e+10 -1e+10 -1e+10 -1e+10 -1e+10 -1e+10 -1e+10 -1e+10

I((level == "2") * 1) -1e+10 -1e+10 NA NA -1e+10 -1e+10 -1e+10 -1e+10

4 -> 2 4 -> 3 4 -> 5 4 -> 6 5 -> 1 5 -> 2 5 -> 3 5 -> 5

I((level == "1") * 1) -1e+10 -1e+10 -1e+10 -1e+10 NA -1e+10 -1e+10 -1e+10

I((level == "2i") * 1) -1e+10 -1e+10 NA NA -1e+10 -1e+10 -1e+10 -1e+10

I((level == "2") * 1) -1e+10 -1e+10 NA NA -1e+10 -1e+10 -1e+10 NA

5 -> 6 6 -> 1 6 -> 2 6 -> 3 6 -> 5 6 -> 6

I((level == "1") * 1) -1e+10 NA -1e+10 -1e+10 -1e+10 -1e+10

I((level == "2i") * 1) -1e+10 -1e+10 -1e+10 -1e+10 -1e+10 -1e+10

I((level == "2") * 1) NA -1e+10 -1e+10 -1e+10 NA NA

101

hhmm$conditions$betaCons

1 -> 2 1 -> 3 1 -> 4 1 -> 5 1 -> 6 2 -> 2 2 -> 3 2 -> 4

I((level == "1") * 1) 1 1 7 1 1 1 1 7

I((level == "2i") * 1) 2 5 1 1 1 1 1 1

I((level == "2") * 1) 3 6 1 1 1 18 21 1

2 -> 5 2 -> 6 3 -> 2 3 -> 3 3 -> 4 3 -> 5 3 -> 6 4 -> 1

I((level == "1") * 1) 1 1 1 1 7 1 1 46

I((level == "2i") * 1) 1 1 1 1 1 1 1 1

I((level == "2") * 1) 1 1 33 36 1 1 1 1

4 -> 2 4 -> 3 4 -> 5 4 -> 6 5 -> 1 5 -> 2 5 -> 3 5 -> 5

I((level == "1") * 1) 1 1 1 1 46 1 1 1

I((level == "2i") * 1) 1 1 56 59 1 1 1 1

I((level == "2") * 1) 1 1 57 60 1 1 1 72

5 -> 6 6 -> 1 6 -> 2 6 -> 3 6 -> 5 6 -> 6

I((level == "1") * 1) 1 46 1 1 1 1

I((level == "2i") * 1) 1 1 1 1 1 1

I((level == "2") * 1) 75 1 1 1 87 90

hhmm$conditions$fixPar$delta

state 2 state 3 state 4 state 5 state 6

(Intercept) -1e+10 -1e+10 NA -1e+10 -1e+10

hhmm$conditions$deltaCons

state 2 state 3 state 4 state 5 state 6

(Intercept) 1 1 3 1 1

We can see that even though we did not explicitly specify fixPar$beta, betaCons,

fixPar$delta, or deltaCons, the working parameters for the t.p.m. and initial dis-

tribution for each level of the hierarchy are constrained accordingly by making certain

state transition and initial distribution probabilities equal and/or effectively zero. For

example, these constraints do not allow fine-scale state switches between “nonforaging”

(states 1 − 3) and “foraging” (states 4 − 6) when level=2. Similar to how the t.p.m.

reference states are defined, higher-level (i.e. “parent”) states are indexed based on the

lowest state index of their “children”. For example, “nonforaging” is indexed by state

1 and “foraging” is indexed by state 4, and only transitions to states 1 or 4 are permit-

ted when level=1. Likewise, because delta corresponds to the initial distribution at

the coarsest-scale, the initial distribution probabilities are effectively zero for all states

102

except states 1 and 4.

Let’s now examine our fitted HHMM:

hhmm

Value of the maximum log-likelihood: -88242.08

##

##

dive_duration parameters:

nf1 nf2 nf3 f1 f2 f3

mean 5.637626 32.18048 106.82949 5.637626 32.18048 106.82949

sd 4.372835 15.13962 38.41245 4.372835 15.13962 38.41245

##

maximum_depth parameters:

nf1 nf2 nf3 f1 f2 f3

mean 3.740050 13.19309 39.61714 3.740050 13.19309 39.61714

sd 1.426269 5.28881 18.11187 1.426269 5.28881 18.11187

##

dive_wiggliness parameters:

nf1 nf2 nf3 f1 f2

mean 1.4566130 11.297307157 4.582791e+01 1.4566130 11.297307157

sd 1.2051922 7.683425497 2.437341e+01 1.2051922 7.683425497

zeromass 0.3089822 0.007867576 2.884684e-04 0.3089822 0.007867576

f3

mean 4.582791e+01

sd 2.437341e+01

zeromass 2.884684e-04

##

##

Regression coeffs for the transition probabilities:

-------------------------- level1 ---------------------------

1 -> 4 4 -> 1

I((level == "1") * 1) -1.298852 -1.285221

##

-------------------------- level2 ---------------------------

1 -> 2 1 -> 3 2 -> 2 2 -> 3 3 -> 2

I((level == "2") * 1) 0.07466832 -1.014794 0.9090668 -0.4242804 0.6198123

3 -> 3

103

I((level == "2") * 1) 0.7823021

##

4 -> 5 4 -> 6 5 -> 5 5 -> 6 6 -> 5

I((level == "2") * 1) -0.5797187 0.7135953 0.7070679 1.621159 0.4255811

6 -> 6

I((level == "2") * 1) 2.701071

##

##

Transition probability matrix (based on mean covariate values):

-------------------------- level1 ---------------------------

nonforaging foraging

nonforaging 0.7856417 0.2143583

foraging 0.2166628 0.7833372

##

-------------------------- level2 ---------------------------

nf1 nf2 nf3

nf1 0.4098354 0.4416086 0.1485559

nf2 0.2417651 0.6000623 0.1581725

nf3 0.1982129 0.3683945 0.4333926

##

f1 f2 f3

f1 0.27767187 0.1555118 0.5668164

f2 0.12365547 0.2507778 0.6255668

f3 0.05738502 0.0878266 0.8547884

##

##

--

Regression coeffs for the initial distribution:

--

-------------------- level1 --------------------

state 4

(Intercept) -6.740456

##

-------------------- level2 --------------------

state 2 state 3

I((level == "2i") * 1) 30.34115 29.65663

##

state 5 state 6

104

I((level == "2i") * 1) -6.010966 1.717094

##

--

##

--

Initial distribution:

--

-------------------- level1 --------------------

nonforaging foraging

ID:Animal1 0.9988193 0.001180712

##

-------------------- level2 --------------------

nf1 nf2 nf3

nonforaging 4.422442e-14 0.6647468 0.3352532

##

f1 f2 f3

foraging 0.152189 0.0003731245 0.8474379

##

--

These estimates are nearly identical to those reported by Leos-Barajas et al. (2017). The

very slight differences are attributable to Leos-Barajas et al. (2017) assuming that the

initial distribution for each level of the hierarchy is equal to the stationary distribution.

However, because it constrains the t.p.m. based on level, this stationarity assumption

is not possible when fitting HHMMs in momentuHMM.

As in a standard HMM, we can decode the most likely state sequence using the

viterbi function:

states <- viterbi(hhmm)

length(states)

[1] 8135

head(states)

[1] 1 2 2 2 2 2

but we can also obtain the most likely state sequences at each level of the hierarchy by

setting the argument hierarchical=TRUE

105

hStates <- viterbi(hhmm, hierarchical=TRUE)

lapply(hStates,length)

$level1

[1] 275

##

$level2

[1] 7860

head(hStates$level1)

[1] "nonforaging" "nonforaging" "nonforaging" "foraging" "foraging"

[6] "foraging"

head(hStates$level2)

[1] "nf2" "nf2" "nf2" "nf2" "nf2" "nf2"

We can plot the estimated state probabilities for each level of the hierarchy (Figures

15 and 16) using the plotStates function:

plotStates(hhmm)

We can also calculate the stationary probabilities of each state for each level of the

hierarchy:

stationary distributions

stats <- stationary(hhmm)

coarse scale

stats[[1]]$level1[1,]

nonforaging foraging

0.5026734 0.4973266

fine scale

lapply(stats[[1]]$level2,function(x) x[1,])

$nonforaging

nf1 nf2 nf3

0.2793769 0.5060947 0.2145284

##

106

Figure 15. Coarse-scale state probabilities for the harbor porpoise example.

107

Figure 16. Fine-scale state probabilities for the harbor porpoise example.

108

$foraging

f1 f2 f3

0.08308649 0.11164262 0.80527089

Finally, we can simulate from our fitted HHMM using the simHierData function.

This requires that we specify the number of observations for each level of the hierarchy

as a data.tree Node (with attribute obs) using the obsPerLevel argument:

obsPerLevel <- data.tree::Node$new("simHierData")

number of level 1 observations

obsPerLevel$AddChild("level1",obs=100)

number of level 2 observations that follow each level 1 observation

obsPerLevel$AddChild("level2",obs=25)

simHHMM <- simHierData(model=hhmm,

obsPerLevel = obsPerLevel, states = TRUE)

head(simHHMM)

ID level dive_duration maximum_depth dive_wiggliness states

1 1 1 NA NA NA 1

2 1 2i NA NA NA 2

3 1 2 41.33292 16.671065 11.677436 2

4 1 2 42.61752 8.838353 16.055691 2

5 1 2 13.22006 10.052027 5.805089 2

6 1 2 58.10525 13.430368 3.182826 2

3.10.2 Garter snakes

Next we’ll quickly demonstrate how to perform the HHMM analysis for the garter snake

movement data in Leos-Barajas et al. (2017) using momentuHMM. This is also a 2-level

HHMM, but now we include three coarse-scale states each composed of three fine-scale

states (for a total of N = 9 states). As before, we must first add the level field to

our data to indicate the level of the hierarchy for each observation and then create a

momentuHierHMMData object with prepData:

109

load garter snake data from Leos-Barajas et al

load(url(paste0("https://static-content.springer.com/esm/",

"art%3A10.1007%2Fs13253-017-0282-9/MediaObjects/",

"13253_2017_282_MOESM1_ESM.rdata")))

W <- dim(dataAr)[3] # number of individuals

M <- dim(dataAr)[2] # number of time series per individual

add 2 extra rows for each time step where coarse scale behavior switches occur

level=1 indicates when coarse-scale behavior switching can occur

level=2i indicates start of each fine-scale interval

level=2 indicates when fine-scale behavior switching can occur

snakeData <- NULL

for(w in 1:W){
coarseInd <- data.frame(ID=w,level=c("1","2i"),step=NA)

for(m in 1:M){
tmp <- rbind(coarseInd,data.frame(ID=w,level="2",step=sqrt(dataAr[,m,w])))

snakeData <- rbind(snakeData,tmp)

}
}

prepare hierarchical data

snakeData <- prepData(snakeData,coordNames=NULL,hierLevels=c("1","2i","2"))

summarize prepared data

summary(snakeData)

Hierarchical HMM data for 19 individuals:

##

1 -- 606 observations

2 -- 606 observations

3 -- 606 observations

4 -- 606 observations

5 -- 606 observations

6 -- 606 observations

7 -- 606 observations

8 -- 606 observations

9 -- 606 observations

10 -- 606 observations

11 -- 606 observations

12 -- 606 observations

13 -- 606 observations

14 -- 606 observations

110

15 -- 606 observations

16 -- 606 observations

17 -- 606 observations

18 -- 606 observations

19 -- 606 observations

##

##

Data summaries:

##

step level

Min. :0.011 1 : 114

1st Qu.:0.334 2i: 114

Median :0.700 2 :11286

Mean :0.790

3rd Qu.:1.149

Max. :3.130

NA's :1496

The sole data stream for this example is step length at the fine-scale level, and no coor-

dinates are provided (hence coordNames=NULL). As in section 3.10.1, this example has

no data streams observed at the coarse-scale level, but these could be easily included (if

available; see sections 3.10.3 and 3.10.4). Let’s now specify the probability distribution

for the fine-scale step length data stream via the hierDist data tree Node (Figure 17):

data stream distributions:

level 1 = coarse level (no data streams)

level 2 = fine level (step="gamma")

hierDist <- data.tree::Node$new("garter snake HHMM dist")

hierDist$AddChild(name="level1")

hierDist$AddChild(name="level2")

hierDist$level2$AddChild(name="step", dist="gamma")

plot(hierDist)

Next we define our HHMM structure via the hierStates data tree Node (Figure

18):

111

Figure 17. Hierarchcial data stream structure in the garter snake example.

define hierarchical HMM: states 1-3 = coarse state 1

states 4-6 = coarse state 2

states 7-9 = coarse state 3

hierStates <- data.tree::Node$new("garter snake HHMM states")

hierStates$AddChild(name="internalState1")

hierStates$internalState1$AddChild(name="mo1", state=1) # motionless

hierStates$internalState1$AddChild(name="ex1", state=2) # slow exploratory

hierStates$internalState1$AddChild(name="es1", state=3) # rapid escape

hierStates$AddChild(name="internalState2")

hierStates$internalState2$AddChild(name="mo2", state=4) # motionless

hierStates$internalState2$AddChild(name="ex2", state=5) # slow exploratory

hierStates$internalState2$AddChild(name="es2", state=6) # rapid escape

hierStates$AddChild(name="internalState3")

hierStates$internalState3$AddChild(name="mo3", state=7) # motionless

hierStates$internalState3$AddChild(name="ex3", state=8) # slow exploratory

hierStates$internalState3$AddChild(name="es3", state=9) # rapid escape

Or, equivalently:

112

hierStates <- data.tree::as.Node(list(name="garter snake HHMM states",

internalState1=list(mo1=list(state=1),

ex1=list(state=2),

es1=list(state=3)),

internalState2=list(mo2=list(state=4),

ex2=list(state=5),

es2=list(state=6)),

internalState3=list(mo3=list(state=7),

ex3=list(state=8),

es3=list(state=9))))

plot(hierStates)

Figure 18. Hierarchcial state structure in the garter snake example.

As in the harbor porpoise example (section 3.10.1), we follow Leos-Barajas et al.

(2017) and assume the fine-scale data stream probability distribution does not depend

on coarse-scale state:

defining start values for step data stream

mu0 <- c(0.121,0.678,1.375)

sd0 <- c(0.06,0.321,0.4875)

Par0 <- list(step=c(rep(mu0,hierStates$count),rep(sd0,hierStates$count)))

113

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain data stream distributions to be same for coarse-scale states

DM <- list(step=matrix(cbind(kronecker(c(1,1,1,0,0,0),diag(3)),

kronecker(c(0,0,0,1,1,1),diag(3))),

nrow=nbStates*2,

ncol=6,

dimnames=list(c(paste0("mean_",1:nbStates),

paste0("sd_",1:nbStates)),

paste0(rep(c("mean","sd"),each=3),

c("_147:(Intercept)",

"_258:(Intercept)",

"_369:(Intercept)")))))

initial parameter values for data stream probability distributions

Par <- getParDM(snakeData,

hierStates=hierStates,hierDist=hierDist,

Par=Par0,DM=DM)

We do not include any covariates in hierFormula or hierFormulaDelta, so all

that’s left before fitting the model is the (optional) step of specifying starting values

for the t.p.m. and initial distribution at each level of the hierarchy (based on values

reported by Leos-Barajas et al. 2017):

hierBeta <- data.tree::Node$new("garter snake beta")

hierBeta$AddChild(name="level1")

hierBeta$AddChild(name="level2")

hierBeta$level2$AddChild(name="internalState1")

hierBeta$level2$AddChild(name="internalState2")

hierBeta$level2$AddChild(name="internalState3")

hierDelta <- data.tree::Clone(hierBeta)

hierDelta$name <- "garter snake delta"

reference states for level1

level1states <- hierStates$Get(function(x) data.tree::Aggregate(x,"state",min),

filterFun=function(x) x$level==2)

hierBeta$level1$beta <- matrix(c(1.24, 0.44, 1.1, -0.87, -1.40, -1.11),

nrow=1,

ncol=hierStates$count*(hierStates$count-1),

114

byrow=TRUE,

dimnames=list("(Intercept)",

c(sapply(level1states,function(x)

paste(

rep(x,each=hierStates$count-1),

"->",

level1states[-which(level1states==x)])))))

hierDelta$level1$delta <- matrix(rep(c(-2.5,-3.5),hierStates$count-1),

nrow=1,

ncol=(hierStates$count-1),

byrow=TRUE,

dimnames=list("(Intercept)",

paste("state",level1states[-1])))

beta0_level2 <- delta0_level2 <- list()

beta0_level2$internalState1 <- c(-2.99, -5.06, 3.93, 1.25, 34.84, 35.97)

beta0_level2$internalState2 <- c(-1.72, -2.78, 3.54, 2.83, 34.72, 36.21)

beta0_level2$internalState3 <- c(-5.10, -17.69, 5.76, -11.34, 33.39, 37.37)

delta0_level2$internalState1 <- c(-1.39, 0.16)

delta0_level2$internalState2 <- c(-1.27, 2.33)

delta0_level2$internalState3 <- c(0.34, -0.26)

for(jj in 1:hierStates$count){
j <- names(hierStates$children)[jj]

reference states for internalState j

ref <- hierStates[[j]]$Get(function(x)

data.tree::Aggregate(x,"state",min),

filterFun=function(x) x$level==2)

states for internalState j

states <- hierStates[[j]]$Get("state",filterFun = isLeaf)

dimNames <- list("(Intercept)",

paste0(rep(states,each=hierStates[[j]]$count-1),

" -> ",

states[-which(states==ref)]))

hierBeta$level2[[j]]$beta <- matrix(beta0_level2[[j]],

nrow=1,

115

ncol=hierStates[[j]]$count*

(hierStates[[j]]$count-1),

byrow=TRUE,

dimnames=dimNames)

hierDelta$level2[[j]]$delta <- matrix(delta0_level2[[j]],

nrow=1,

ncol=(hierStates[[j]]$count-1),

byrow=TRUE,

dimnames=list("(Intercept)",

names(states)[-1]))

}

Let’s check our model specification:

checkPar0(snakeData,hierStates=hierStates,hierDist=hierDist,

Par0=Par,DM=DM,

hierBeta=hierBeta,hierDelta=hierDelta)

##

Regression coeffs for step parameters:

mean_147:(Intercept) mean_258:(Intercept) mean_369:(Intercept)

[1,] -2.111965 -0.388608 0.3184537

sd_147:(Intercept) sd_258:(Intercept) sd_369:(Intercept)

[1,] -2.813411 -1.136314 -0.718465

##

--

Regression coeffs for the transition probabilities (beta):

--

------------------------- level1 -----------------------

1 -> 4 1 -> 7 4 -> 1 4 -> 7 7 -> 1 7 -> 4

I((level == "1") * 1) 1.24 0.44 1.1 -0.87 -1.4 -1.11

##

------------------------- level2 -----------------------

1 -> 2 1 -> 3 2 -> 2 2 -> 3 3 -> 2 3 -> 3

I((level == "2") * 1) -2.99 -5.06 3.93 1.25 34.84 35.97

##

4 -> 5 4 -> 6 5 -> 5 5 -> 6 6 -> 5 6 -> 6

I((level == "2") * 1) -1.72 -2.78 3.54 2.83 34.72 36.21

##

7 -> 8 7 -> 9 8 -> 8 8 -> 9 9 -> 8 9 -> 9

116

I((level == "2") * 1) -5.1 -17.69 5.76 -11.34 33.39 37.37

##

--

##

--

Regression coeffs for the initial distribution (delta):

--

------------------------ level1 ------------------------

state 4 state 7

(Intercept) -2.5 -3.5

##

------------------------ level2 ------------------------

state 2 state 3

I((level == "2i") * 1) -1.39 0.16

##

state 5 state 6

I((level == "2i") * 1) -1.27 2.33

##

state 8 state 9

I((level == "2i") * 1) 0.34 -0.26

##

--

Again note that higher-level (i.e. “parent”) states are indexed based on the lowest

state index of their “children”. For example, “internalState1” is indexed by state 1,

“internalState2” is indexed by state 4, and “internalState3” is indexed by state 7. We

can also examine the starting values for the t.p.m. on the real scale (“gamma”) at each

level of the hierarchy using the getTrProbs function:

iTrProbs <- getTrProbs(snakeData,hierStates=hierStates,

hierBeta=hierBeta,hierDist=hierDist)

t.p.m. at first time step for level1

iTrProbs$level1$gamma[,,1]

internalState1 internalState2 internalState3

internalState1 0.1664359 0.5751380 0.25842616

internalState2 0.6791965 0.2260849 0.09471861

internalState3 0.1564547 0.2090903 0.63445500

t.p.m. at first time step for level2

lapply(iTrProbs$level2,function(x) x$gamma[,,1])

117

$internalState1

mo1 ex1 es1

mo1 9.464024e-01 0.04759215 0.006005453

ex1 1.805141e-02 0.91894296 0.063005628

es1 1.806578e-16 0.24416110 0.755838899

##

$internalState2

mo2 ex2 es2

mo2 8.057338e-01 0.1442797 0.04998652

ex2 1.907946e-02 0.6576103 0.32331027

es2 1.534365e-16 0.1839217 0.81607827

##

$internalState3

mo3 ex3 es3

mo3 9.939402e-01 0.006059801 2.063911e-08

ex3 3.141213e-03 0.996858749 3.734204e-08

es3 5.785955e-17 0.018342891 9.816571e-01

Now let’s fit our garter snake HHMM:

fit hierarchical HMM

hhmm <- fitHMM(snakeData,hierStates=hierStates,hierDist=hierDist,

Par0=Par,DM=DM,hierBeta=hierBeta,hierDelta=hierDelta,

nlmPar=list(hessian=FALSE))

hhmm

Value of the maximum log-likelihood: -2060.361

##

##

step parameters:

mo1 ex1 es1 mo2 ex2 es2 mo3

mean 0.12148244 0.6778585 1.3749445 0.12148244 0.6778585 1.3749445 0.12148244

sd 0.05906919 0.3217371 0.4876126 0.05906919 0.3217371 0.4876126 0.05906919

ex3 es3

mean 0.6778585 1.3749445

sd 0.3217371 0.4876126

##

##

118

Regression coeffs for the transition probabilities:

-------------------------- level1 ---------------------------

1 -> 4 1 -> 7 4 -> 1 4 -> 7 7 -> 1

I((level == "1") * 1) 1.245627 0.4309195 1.102371 -0.8702136 -1.397626

7 -> 4

I((level == "1") * 1) -1.114395

##

-------------------------- level2 ---------------------------

1 -> 2 1 -> 3 2 -> 2 2 -> 3 3 -> 2 3 -> 3

I((level == "2") * 1) -2.993163 -5.064874 3.927789 1.246248 34.83412 35.96589

##

4 -> 5 4 -> 6 5 -> 5 5 -> 6 6 -> 5 6 -> 6

I((level == "2") * 1) -1.721179 -2.775671 3.540743 2.834411 34.70869 36.19201

##

7 -> 8 7 -> 9 8 -> 8 8 -> 9 9 -> 8 9 -> 9

I((level == "2") * 1) -5.098038 -17.69051 5.761082 -11.341 33.38975 37.36931

##

##

Transition probability matrix (based on mean covariate values):

-------------------------- level1 ---------------------------

internalState1 internalState2 internalState3

internalState1 0.1662846 0.5778580 0.25585742

internalState2 0.6797265 0.2257256 0.09454788

internalState3 0.1569121 0.2082868 0.63480106

##

-------------------------- level2 ---------------------------

mo1 ex1 es1

mo1 9.465723e-01 0.04745038 0.005977329

ex1 1.809240e-02 0.91899540 0.062912203

es1 1.814806e-16 0.24383499 0.756165009

##

mo2 ex2 es2

mo2 8.056961e-01 0.1441028 0.05020101

ex2 1.904293e-02 0.6568393 0.32411779

es2 1.560291e-16 0.1849268 0.81507322

##

mo3 ex3 es3

mo3 9.939284e-01 0.006071628 2.062842e-08

119

ex3 3.137826e-03 0.996862137 3.726456e-08

es3 5.789928e-17 0.018350938 9.816491e-01

##

##

--

Regression coeffs for the initial distribution:

--

-------------------- level1 --------------------

state 4 state 7

(Intercept) -2.536671 -3.509152

##

-------------------- level2 --------------------

state 2 state 3

I((level == "2i") * 1) -1.38723 0.1583617

##

state 5 state 6

I((level == "2i") * 1) -1.274268 2.327495

##

state 8 state 9

I((level == "2i") * 1) 0.3388004 -0.2605839

##

--

##

--

Initial distribution:

--

-------------------- level1 --------------------

internalState1 internalState2 internalState3

ID:1 0.9016712 0.07134871 0.02698007

ID:2 0.9016712 0.07134871 0.02698007

ID:3 0.9016712 0.07134871 0.02698007

ID:4 0.9016712 0.07134871 0.02698007

ID:5 0.9016712 0.07134871 0.02698007

ID:6 0.9016712 0.07134871 0.02698007

ID:7 0.9016712 0.07134871 0.02698007

ID:8 0.9016712 0.07134871 0.02698007

ID:9 0.9016712 0.07134871 0.02698007

ID:10 0.9016712 0.07134871 0.02698007

ID:11 0.9016712 0.07134871 0.02698007

ID:12 0.9016712 0.07134871 0.02698007

ID:13 0.9016712 0.07134871 0.02698007

120

ID:14 0.9016712 0.07134871 0.02698007

ID:15 0.9016712 0.07134871 0.02698007

ID:16 0.9016712 0.07134871 0.02698007

ID:17 0.9016712 0.07134871 0.02698007

ID:18 0.9016712 0.07134871 0.02698007

ID:19 0.9016712 0.07134871 0.02698007

##

-------------------- level2 --------------------

mo1 ex1 es1

internalState1 0.4129917 0.1031514 0.4838569

##

mo2 ex2 es2

internalState2 0.08671624 0.02424895 0.8890348

##

mo3 ex3 es3

internalState3 0.3150733 0.4421308 0.2427959

##

--

These estimates are virtually identical to Leos-Barajas et al. (2017); the only (very

slight) difference is in the estimates for the coarse-scale initial distribution (δ(0)) be-

cause, unlike in Leos-Barajas et al. (2017), the forward algorithm in momentuHMM (Eq.

1) includes a state transition between time steps t = 0 and t = 1.

As usual, we can check pseudo-residuals using plotPR (Figure 19):

plotPR(hhmm)

and simulate from our fitted HHMM using simHierData:

obsPerLevel <- data.tree::Node$new("simHierData")

number of level 1 observations

obsPerLevel$AddChild("level1",obs=M)

number of level 2 observations that follow each level 1 observation

obsPerLevel$AddChild("level2",obs=dim(dataAr)[1])

simHHMM <- simHierData(nbAnimals=W,

model=hhmm,

obsPerLevel = obsPerLevel, states = TRUE)

121

Figure 19. Pseudo-residual plot for the HHMM garter snake example.

head(simHHMM)

ID level step x y states

1 1 1 NA NA NA 4

2 1 2i NA NA NA 6

3 1 2 0.9056870 0.000000 0 6

4 1 2 1.9412553 0.905687 0 6

5 1 2 0.8871563 2.846942 0 6

6 1 2 0.6157444 3.734099 0 5

3.10.3 Atlantic cod

Now we will demonstrate how HHMMs with data streams observed at multiple time

scales can be fitted using momentuHMM. In their Atlantic cod example, Adam et al. (2019)

fit a 9-state HHMM to coarse-scale horizontal (i.e., step length and turn angle) and fine-

scale vertical movement data. The coarse-scale states were “resting/foraging” (hereafter

“resForage”), “mobile/foraging” (hereafter “mobForage”), and “travelling/migrating”

(hereafter “transit”), each of which was composed of three fine-scale states. To begin

our analysis, we must first load and prepare the data (available for download from

Adam et al. 2019):

122

load the data from Adam et al

load("Atlantic_cod_data_set.RData")

coarse-scale data

data <- data.frame(level="1",

step=steps,

angle=angles,

vertical=NA,

time=0)

add extra rows for fine-scale data

level=1 indicates when coarse-scale behavior switching can occur

level=2i indicates start of each fine-scale interval

level=2 indicates when fine-scale behavior switching can occur

codData <- NULL

timeSeq <- seq(from=0,to=23+5/6,length=144) # time of day covariate

for(i in 1:nrow(data)){
fineInd <- data.frame(level="2",

step=NA,

angle=NA,

vertical=verticals[[i]],

time=timeSeq)

tmp <- rbind(data[i,,drop=FALSE],

data.frame(level="2i",

step=NA,

angle=NA,

vertical=NA,

time=0),

fineInd)

codData <- rbind(codData,tmp)

}

prepare hierarchical data

codData <- prepData(codData, coordNames=NULL,

covNames="time",

hierLevels=c("1","2i","2"))

head(codData)

data summary

summary(codData,dataNames=names(codData)[-1])

123

From sections 3.10.1 and 3.10.2, we should now be familiar with how to specify

HHMMs with state transitions at multiple time scales. We will therefore focus on

how to accommodate data streams that are observed at multiple time scales here, but

complete details and code for fitting this model can be found in the “codExample.R”

script in the momentuHMM “vignettes” source directory (or at https://github.com/

bmcclintock/momentuHMM). First we specify the hierarchical nature of the states as a

data.tree Node (Figure 20):

define hierarchical HMM

states 1-3 = coarse state 1 (resident/foraging)

states 4-6 = coarse state 2 (mobile/foraging)

states 7-9 = coarse state 3 (travelling/migrating)

hierStates <- data.tree::Node$new("cod HHMM states")

hierStates$AddChild("resForage") # resident/foraging

hierStates$resForage$AddChild("rF1", state=1)

hierStates$resForage$AddChild("rF2", state=2)

hierStates$resForage$AddChild("rF3", state=3)

hierStates$AddChild("mobForage") # mobile/foraging

hierStates$mobForage$AddChild("mF1", state=4)

hierStates$mobForage$AddChild("mF2", state=5)

hierStates$mobForage$AddChild("mF3", state=6)

hierStates$AddChild("transit") # travelling/migrating

hierStates$transit$AddChild("t1", state=7)

hierStates$transit$AddChild("t2", state=8)

hierStates$transit$AddChild("t3", state=9)

plot(hierStates)

Next we specify the hierarchical nature of the data streams as a data.tree Node

(Figure 21):

data stream distributions

level 1 = coarse level (step="gamma", angle="vm")

level 2 = fine level (vertical="gamma")

hierDist <- data.tree::Node$new("cod HHMM dist")

hierDist$AddChild("level1")

hierDist$level1$AddChild("step", dist="gamma")

hierDist$level1$AddChild("angle", dist="vm")

hierDist$AddChild("level2")

hierDist$level2$AddChild("vertical", dist="gamma")

124

https://github.com/bmcclintock/momentuHMM
https://github.com/bmcclintock/momentuHMM

Figure 20. Hierarchical state structure in the cod example.

plot(hierDist)

We then constrain the fine-scale states within each coarse-scale state to have the

same parameters for the “step” and “angle” distributions using the DM argument:

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain coarse-scale parameters for fine-scale states

DM <- list(step=matrix(kronecker(diag(6),c(1,1,1)),

nrow=2*nbStates,

ncol=6,

dimnames=list(paste0(rep(c("mean_","sd_"),each=nbStates)

,1:nbStates),

c(paste0(rep(c("mean_","sd_"),each=3),

1:length(hierStates$children),

":(Intercept)")))))

DM$angle <- DM$step

dimnames(DM$angle) <- list(paste0(rep(c("mean_","concentration_"),each=nbStates)

,1:nbStates),

c(paste0(rep(c("mean_","concentration_"),each=3),

125

Figure 21. Hierarchical data stream structure in the cod example.

1:length(hierStates$children),

":(Intercept)")))

and obtain starting values on the working scale using getParDM:

defining start values based on those reported by Adam et al

hm.mu0 <- c(5.482, 6.786, 14.914)

hm.sigma0 <- c(4.27, 4.714, 11.242)

ha.mu0 <- c(0.011, -0.299, 0.044)

ha.kappa0 <- c(1.571, 1.426, 2.15)

vm.mu0 <- vm.sigma0 <- vm.pi0 <- list()

vm.mu0[[1]] <- c(0.116, 0.303, 0.691)

vm.mu0[[2]] <- c(0.109, 0.056, 0.351)

vm.mu0[[3]] <- c(0.125, 0.514, 1.987)

vm.sigma0[[1]] <- c(0.096, 0.261, 0.636)

vm.sigma0[[2]] <- c(0.043, 0.047, 0.342)

vm.sigma0[[3]] <- c(0.109, 0.462, 1.878)

126

vm.pi0[[1]] <- c(0.014, 0.003, 1.050e-06)

vm.pi0[[2]] <- c(1.791e-08, 0.035, 0.002)

vm.pi0[[3]] <- c(0.012, 2.933e-04, 3.462e-09)

Par0 <- list(step=c(rep(hm.mu0,each=3),rep(hm.sigma0,each=3)),

angle=c(rep(ha.mu0,each=3),rep(ha.kappa0,each=3)),

vertical=c(unlist(vm.mu0),unlist(vm.sigma0),unlist(vm.pi0)))

starting values for data stream parameters on the working scale

Par <- getParDM(codData,

hierStates=hierStates,

hierDist=hierDist,

Par=Par0,

DM=DM,

estAngleMean = list(angle=TRUE))

Adam et al. (2019) included a periodic time-of-day covariate on the fine-scale state

transition probabilities, and we specify this via the hierFormula argument:

define hierarchical t.p.m. formula(s)

hierFormula <- data.tree::Node$new("cod HHMM formula")

hierFormula$AddChild("level1", formula=~1)

hierFormula$AddChild("level2", formula=~cosinor(time, period=24))

All that remains is (optionally) specifying starting values for the initial distribution

(hierDelta) and t.p.m. (hierBeta) parameters, which we’ll base on those reported by

Adam et al. (2019) to speed up the optimization:

hierBeta <- data.tree::Node$new("cod beta")

hierBeta$AddChild("level1",

beta=matrix(c(-18.585, -2.86, -2.551, -1.641, -2.169, -2.415),

nrow=1,

ncol=length(hierStates$children)

*(length(hierStates$children)-1)))

hierBeta$AddChild("level2")

hierBeta$level2$AddChild("resForage",

beta=matrix(c(-2.562, -3.403, 2.765, -1.607, 2.273, 4.842,

-0.665, -0.26, -0.681, -0.149, -2.728, -2.798,

-0.027, 0.26, 0.191, 0.667, 0.123, -0.262),

nrow=3,

127

ncol=length(hierStates$resForage$children)

*(length(hierStates$resForage$children)-1),

byrow=TRUE))

hierBeta$level2$AddChild("mobForage",

beta=matrix(c(-2.156, -3.662, 3.01, 0.597, -0.313, 2.897,

0.067, -1.22, -0.799, -0.797, 0.15, 0.379,

-0.112, -0.195, -0.269, -0.215, 1.539, 0.728),

nrow=3,

ncol=length(hierStates$mobForage$children)

*(length(hierStates$mobForage$children)-1),

byrow=TRUE))

hierBeta$level2$AddChild("transit",

beta=matrix(c(-2.53, -4.279, 2.507, -0.228, 10.803, 12.873,

-0.04, 1.221, -0.301, 0.284, -0.106, -0.077,

0.629, -0.226, -0.253, -0.303, 0.011, 0.036),

nrow=3,

ncol=length(hierStates$transit$children)

*(length(hierStates$transit$children)-1),

byrow=TRUE))

hierDelta <- data.tree::Node$new("cod delta")

hierDelta$AddChild("level1",delta=matrix(c(15.776, 4.78),1))

hierDelta$AddChild("level2")

hierDelta$level2$AddChild("resForage",delta=matrix(c(-0.643, -2.416),1))

hierDelta$level2$AddChild("mobForage",delta=matrix(c(1.181, 0.46),1))

hierDelta$level2$AddChild("transit",delta=matrix(c(-0.357, -0.624),1))

check hierarchical model specification and parameters

checkPar0(codData,

hierStates = hierStates,

hierDist = hierDist,

hierFormula = hierFormula,

Par0 = Par, hierBeta = hierBeta, hierDelta = hierDelta,

DM = DM,

estAngleMean = list(angle=TRUE))

and we are now ready to fit the HHMM:

hhmm <- fitHMM(codData,

hierStates = hierStates,

hierDist = hierDist,

hierFormula = hierFormula,

128

Par0 = Par, hierBeta = hierBeta, hierDelta = hierDelta,

DM = DM,

estAngleMean = list(angle=TRUE))

plot(hhmm, plotCI=TRUE, ask=FALSE)

plot stationary distributions and CIs

plotStationary(hhmm, plotCI=TRUE)

The resulting estimates are virtually identical to Adam et al. (2019); the slight

differences are attributable to: 1) the forward algorithm in momentuHMM (Eq. 1) includes

a state transition between time steps t = 0 and t = 1; and 2) momentuHMM uses the lowest

fine-scale state index for each coarse-scale state as the mlogit-link reference state for the

initial distribution and t.p.m.Nevertheless, we can see that the estimated coarse-scale

data stream probability distribution (Figure 22) and fine-scale stationary probabilities

as a function of time of day (Figure 23) are very similar.

Figure 22. Estimated state-dependent distributions of coarse-scale step lengths (left panel)
and turning angles (right panel) of an Atlantic cod.

3.10.4 Horn shark

For our final HHMM example, we’ll quickly demonstrate how the horn shark exam-

ple from Adam et al. (2019) can be fitted in momentuHMM. The data streams in this

129

Figure 23. Stationary distributions of the fine-scale state processes for an Atlantic cod as a
function of time of day for the coarse-scale states corresponding to “resting/foraging” (top-left
panel), “mobile/foraging” (top-right panel), and “travelling/migrating” (bottom panel).

130

example consist of coarse-scale categorical step lengths (stepCat) based on estimated

geopositions at 2 second intervals over 194 distinct segments and, within each 2 second

interval, fine-scale accelerometer data that were summarized as 50 sequential values of

overall dynamic body acceleration (odba). The analysis included 8 categories for step

length to construct a so-called histogram distribution of step lengths, where category

1 indicates zero step lengths and categories 2− 8 were defined by increasing cutoffs at

0.00075, 0.00125, 0.00175, 0.00225, 0.00275, 0.00325, and 0.00375 m, respectively. The

9-state HHMM included three coarse-scale states (“activity”, “resting”, and “transit”),

each composed of three fine-scale states.

First we load and prepare the data (available for download from Adam et al. 2019):

load the data from Adam et al

load("horn_shark_data_set.RData")

coarse-scale data

data <- data.frame(ID=unlist(mapply(function(x) rep(paste0("seg",x),

nrow(steps[[x]])-1),

1:length(steps))),

level="1",

steps=unlist(lapply(steps,function(x) x$steps[-nrow(x)])),

stepCat=unlist(lapply(steps,function(x) x$cats[-nrow(x)])),

odbas=NA)

data$stepCat[which(is.na(data$steps))] <- NA

add extra rows for fine-scale data

level=1 indicates when coarse-scale behavior switching can occur

level=2i indicates start of each fine-scale interval

level=2 indicates when fine-scale behavior switching can occur

odbas <- unlist(odbas)

sharkData <- NULL

for(i in 1:nrow(data)){
fineInd <- data.frame(ID=data$ID[i],

level="2",

steps=NA,

stepCat=NA,

odbas=odbas[(i-1)*50+1:50])

tmp <- rbind(data[i,,drop=FALSE],

data.frame(ID=data$ID[i],

level="2i",

steps=NA,

131

stepCat=NA,

odbas=NA),

fineInd)

sharkData <- rbind(sharkData,tmp)

}

prepare hierarchical data

sharkData <- prepData(sharkData,coordNames=NULL,

hierLevels=c("1","2i","2"))

Note that because the 194 segments were observed irregularly in bouts of time over the

coarse of one night, Adam et al. (2019) essentially treated each segment as a different

track whereby the HHMM “resets” at the beginning of each segment; this can be

accomplished in momentuHMM by simply assigning each segment its own ID as was done

above:

head(sharkData)

ID level steps stepCat odbas

1 seg1 1 0.001447295 4 NA

2 seg1 2i NA NA NA

3 seg1 2 NA NA 0.07733020

4 seg1 2 NA NA 0.07424251

5 seg1 2 NA NA 0.07866384

6 seg1 2 NA NA 0.07899367

tail(sharkData)

ID level steps stepCat odbas

452682 seg194 2 NA NA 0.06118823

462682 seg194 2 NA NA 0.08593020

472682 seg194 2 NA NA 0.07211103

482682 seg194 2 NA NA 0.09512092

492682 seg194 2 NA NA 0.09484725

502681 seg194 2 NA NA 0.09834612

Next we define the hierarchical nature of the states and data streams (Figures ??):

132

define hierarchical HMM

states 1-3 = coarse state 1 (high activity)

states 4-6 = coarse state 2 (resting)

states 7-9 = coarse state 3 (travelling)

hierStates <- data.tree::Node$new("shark HHMM states")

hierStates$AddChild("activity") # zero distance travelled, high activity

hierStates$activity$AddChild("a1", state=1)

hierStates$activity$AddChild("a2", state=2)

hierStates$activity$AddChild("a3", state=3)

hierStates$AddChild("resting") # zero distance travelled, low activity

hierStates$resting$AddChild("r1", state=4)

hierStates$resting$AddChild("r2", state=5)

hierStates$resting$AddChild("r3", state=6)

hierStates$AddChild("transit") # travelling

hierStates$transit$AddChild("t1", state=7)

hierStates$transit$AddChild("t2", state=8)

hierStates$transit$AddChild("t3", state=9)

plot(hierStates)

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

nCat <- 8 # number of stepCat categories

data stream distributions

level 1 = coarse level (stepCat="cat8")

level 2 = fine level (odbas="gamma")

hierDist <- data.tree::Node$new("shark HHMM dist")

hierDist$AddChild("level1")

hierDist$level1$AddChild("stepCat", dist=paste0("cat",nCat))

hierDist$AddChild("level2")

hierDist$level2$AddChild("odbas", dist="gamma")

plot(hierDist)

This is the first example in the vignette that uses a categorical data stream probabil-

ity distribution, so it is perhaps worth describing this in a little more detail. When

specifying categorical distributions, the number of categories must be indicated. In this

case, there are 8 stepCat categories, so we specify this as cat8. Generally, categorical

distributions are specified as paste0("cat",nCat), where nCat is an integer greater

than 2 (note that a categorical distribution with only 2 categories is simply a Bernoulli

distribution). The categorical distribution parameters are nCat probabilities that sum

133

Figure 24. Hierarchical state structure in the horn shark example.

Figure 25. Hierarchical data stream structure in the horn shark example.

134

to 1, so the mlogit link is used and only nCat −1 working parameters are estimated in

order to obtain the nCat categorical probabilities on the real scale.

Both the “activity” and “resting” coarse-scale states were assumed to have zero

distance travelled (i.e., stepCat = 1), while the “transit” state was assumed to have

> 0 distance travelled (i.e., stepCat ∈ 2, . . . , 8). We therefore need to constrain the

categorical step length probabilities for each fine-scale state within each coarse-scale

state accordingly:

starting values based on Adam et al

mu0 <- c(0.191, 0.323, 0.721, 0.084, 0.15, 0.228, 0.094, 0.191, 0.39)

sd0 <- c(0.047, 0.051, 0.248, 0.021, 0.025, 0.033, 0.026, 0.039, 0.159)

probs0 <- c(1e+10, -1e+10, 0.958, 5.064, 3.261, 4.021, 0.473, 2.568)

constrain coarse-scale parameters for fine-scale states

DM <- list(stepCat=matrix(cbind(c(rep(c(1,1,1),2),

rep(0,(nCat-1)*nbStates-6)),

kronecker(diag(nCat-1),

c(0,0,0,0,0,0,1,1,1))),

nrow=(nCat-1)*nbStates,

ncol=8,

dimnames=list(paste0(rep(paste0("prob",

1:(nCat-1),

"_"),

each=nbStates),

1:nbStates),

c(paste0(c("prob1_12",

paste0("prob",

1:(nCat-1),

"_3")),

":(Intercept)")))))

head(DM$stepCat,nbStates)

prob1_12:(Intercept) prob1_3:(Intercept) prob2_3:(Intercept)

prob1_1 1 0 0

prob1_2 1 0 0

prob1_3 1 0 0

prob1_4 1 0 0

prob1_5 1 0 0

prob1_6 1 0 0

prob1_7 0 1 0

prob1_8 0 1 0

135

prob1_9 0 1 0

prob3_3:(Intercept) prob4_3:(Intercept) prob5_3:(Intercept)

prob1_1 0 0 0

prob1_2 0 0 0

prob1_3 0 0 0

prob1_4 0 0 0

prob1_5 0 0 0

prob1_6 0 0 0

prob1_7 0 0 0

prob1_8 0 0 0

prob1_9 0 0 0

prob6_3:(Intercept) prob7_3:(Intercept)

prob1_1 0 0

prob1_2 0 0

prob1_3 0 0

prob1_4 0 0

prob1_5 0 0

prob1_6 0 0

prob1_7 0 0

prob1_8 0 0

prob1_9 0 0

Par0 <- list(stepCat = probs0,

odbas = c(mu0,sd0))

fixPar <- list(stepCat=c(1.e+10,-1.e+10,rep(NA,6)))

By fixing the working parameter corresponding to the probability of observing step

length category 1 (prob1) for coarse-scale state 1 (fine-scale states 1−3) and coarse-scale

state 2 (fine-scale states 4−6) to a very large positive number, we have effectively fixed

prob1 = 1 for these states. Likewise, by fixing the working parameter corresponding to

prob1 for coarse-scale state 3 (fine-scale states 7− 9) to a very large negative number,

we have effectively fixed prob1 = 0 for this state.

All that remains is (optionally) specifying starting values for the initial distribution

(hierDelta) and t.p.m. (hierBeta) parameters, and let’s check our model specification

before fitting using checkPar0:

t.p.m. starting values based on Adam et al

hierBeta <- data.tree::Node$new("shark beta")

hierBeta$AddChild("level1",

136

beta=matrix(c(-0.651, -0.169, -1.884, -0.369, -1.596, -0.737),

ncol=length(hierStates$children)

*(length(hierStates$children)-1)))

hierBeta$AddChild("level2")

hierBeta$level2$AddChild("activity",

beta=matrix(c(-2.902, -14.032, 3.059, -1.37, 8.098, 11.66),

ncol=length(hierStates$activity$children)

*(length(hierStates$activity$children)-1)))

hierBeta$level2$AddChild("resting",

beta=matrix(c(-3.264, -14.279, 3.107, 0.252, 13.861, 16.468),

ncol=length(hierStates$resting$children)

*(length(hierStates$resting$children)-1)))

hierBeta$level2$AddChild("transit",

beta=matrix(c(-3.21, -21.32, 3.463, -0.598, 14.636, 17.811),

ncol=length(hierStates$transit$children)

*(length(hierStates$transit$children)-1)))

initial distribution starting values based on Adam et al

hierDelta <- data.tree::Node$new("shark delta")

hierDelta$AddChild("level1",

delta=matrix(c(0.582, 2.894),

ncol=length(hierStates$children)-1))

hierDelta$AddChild("level2")

hierDelta$level2$AddChild("activity",

delta=matrix(c(-0.001, -1.1),

ncol=length(hierStates$activity$children)-1))

hierDelta$level2$AddChild("resting",

delta=matrix(c(-0.103, -0.105),

ncol=length(hierStates$resting$children)-1))

hierDelta$level2$AddChild("transit",

delta=matrix(c(0.24, -0.777),

ncol=length(hierStates$transit$children)-1))

check hierarchical model specification and parameters

checkPar0(sharkData,

hierStates=hierStates,

hierDist=hierDist,

Par0=Par0,

DM=DM,

hierBeta=hierBeta,

hierDelta=hierDelta,

fixPar=fixPar)

137

Everything checks out, so let’s now fit the horn shark HHMM:

hhmm <- fitHMM(sharkData,

hierStates=hierStates,

hierDist=hierDist,

Par0=Par0,

hierBeta=hierBeta,

hierDelta=hierDelta,

DM=DM,

fixPar=fixPar)

transition probabilities for level1 and level2

trProbs12 <- getTrProbs(hhmm, covIndex=c(1,3))

stationary distributions for level1 and level2

stats12 <- stationary(hhmm, covIndex=c(1,3))

The resulting estimates are again very similar to Adam et al. (2019), with the slight

differences attributable to Adam et al. (2019) assuming the initial distributions for each

level of the hierarchy are equal to the stationary distributions. Nevertheless, we can

see that the estimated t.p.m. and stationary distributions are very similar:

coarse scale

t.p.m.

round(trProbs12$level1$gamma[,,1],3)

activity resting transit

activity 0.423 0.221 0.357

resting 0.082 0.543 0.375

transit 0.121 0.285 0.594

stationary distribution

round(stats12[[1]]$level1[1,],3)

activity resting transit

0.153 0.371 0.477

##

fine scale

t.p.m.

lapply(trProbs12$level2,function(x) round(x$gamma[,,1],3))

138

$activity

a1 a2 a3

a1 0.948 0.052 0.000

a2 0.044 0.944 0.011

a3 0.000 0.028 0.972

##

$resting

r1 r2 r3

r1 0.963 0.037 0.000

r2 0.041 0.907 0.052

r3 0.000 0.069 0.931

##

$transit

t1 t2 t3

t1 0.961 0.039 0.000

t2 0.030 0.954 0.016

t3 0.000 0.040 0.960

stationary distribution

lapply(stats12[[1]]$level2,function(x) round(x[1,],3))

$activity

a1 a2 a3

0.377 0.443 0.181

##

$resting

r1 r2 r3

0.385 0.349 0.265

##

$transit

t1 t2 t3

0.353 0.459 0.188

##

3.11 African buffalo recharge dynamics

Here we demonstrate how to fit a discrete-time version of the African buffalo recharge

dynamics model from Hooten et al. (2019) based only on surface water covariates.

It is believed that water resources can strongly influence African buffalo space use,

and surface water was therefore included in both the movement model (as distance to

139

nearest surface water d) and the recharge function (as an indicator for being < 0.5

km to nearest surface water w). The model includes N = 2 states, where state 1

is the “recharged” state and state 2 is the “discharged” state. Conditional on the

state St ∈ {1, 2}, the discrete-time analogue to the continuous-time model of Hooten

et al. (2019) has the following bivariate normal random walk movement model for the

locations (µ = (µx, µy)) at time t:

µt | St = s ∼ N
(
µt−1 +D(µt−1)β

µI(s = 2), σ2
sI
)
,

where I() is the indicator function, I is a 2×2 identity matrix, and D(µt) is the gradient

of d evaluated at location µt. Thus when the animal is in the charged state (i.e. St = 1),

the movement model is a simple random walk. When the animal is in the discharged

state (i.e. St = 2), the movement model includes a potential function surface based on

distance to nearest surface water (for more on potential functions see Brillinger et al.

2012; Hooten et al. 2017, 2019, and sections 3.3 and 3.12). In terms of Γ(t), the model

for the state-switching dynamics is simply:

Γ(t) =

[
1

(1+exp(−gt))
exp(−gt)

(1+exp(−gt))

1
(1+exp(−gt))

exp(−gt)
(1+exp(−gt))

]
, (14)

with recharge function

gt = g0 +
t∑

j=1

θ0 + wjθ1,

where wj is the distance to nearest water indicator covariate at location µj. Thus the

probability of being in the “discharged” state decreases as the recharge function (gt)

increases. Note that there are no t.p.m. working parameter coefficients in Eq. 14 and,

because γ11 = γ21 and γ12 = γ22, the state switching in this model is not Markov (i.e.,

the state at time t does not depend on the state at time t− 1).

In order to fit this model, we must first load the data and format the covariate

rasters:

library(raster)

download buffalo data

load(url(paste0("https://github.com/henryrscharf/",

"Hooten_et_al_EL_2018/raw/master/",

140

"data/buffalo/buffalo_Cilla.RData")))

download distance to water covariate raster

load(url(paste0("https://github.com/henryrscharf/",

"Hooten_et_al_EL_2018/raw/master/",

"data/buffalo/dist2sabie.RData")))

names(dist2sabie) <- "dist2sabie"

standardize dist2sabie based on slope of gradient

dist2sabie_scaled <- dist2sabie / mean(values(terrain(dist2sabie,

opt = "slope")),

na.rm = T)

W (recharge function covariates)

near_sabie = indicator for <500m from water

intercept <- raster(dist2sabie)

values(intercept) <- 1

W <- stack(list("intercept" = intercept,

"near_sabie" = dist2sabie < 0.5e3))

W_names <- names(W)

orthogonalize W based on locations ----

W_ortho <- W

W_path <- extract(x = W, y = matrix(buffalo_proj@coords, ncol = 2))

obstimes <- as.numeric(buffalo_proj$POSIX) / 3600 # numeric hours

W_tilde <- apply(W_path * c(0, diff(obstimes)), 2, cumsum)

W_tilde_svd <- svd(W_tilde)

W_tilde_proj_mat <- W_tilde_svd$v %*% diag(W_tilde_svd$d^(-1))

W_mat <- as.matrix(W)

W_mat_proj <- W_mat %*% W_tilde_proj_mat

for(layer in 1:ncol(W_mat)){
values(W_ortho[[layer]]) <- W_mat_proj[, layer]

names(W_ortho[[layer]]) <- paste0("svd", layer)

}

Note that to (presumably) help with numerical stability, Hooten et al. (2019) orthog-

onalized the recharge function covariates as above; the resulting recharge function is

now gt = g0 +
∑t

j=1w
∗
1,jθ1 + w∗

2,jθ2, where w∗
1,j and w∗

2,j are the transformed intercept

and distance indicator covariates, respectively.

The buffalo track data were collected from a GPS collar, but the roughly hourly

observations were not perfectly regular.We will therefore use crawlWrap to predict the

141

track at regular 15 min intervals (the average interval used by Hooten et al. 2019) and

assume a conservative 50 m isotropic error ellipse for the measurement error model.

lnError <- crawl::argosDiag2Cov(50,50,0) # 50m isotropic error ellipse

buffaloData <- data.frame(ID = 1,

time = obstimes,

x = buffalo_proj@coords[, 1],

y = buffalo_proj@coords[, 2],

ln.sd.x = lnError$ln.sd.x,

ln.sd.y = lnError$ln.sd.y,

error.corr = lnError$error.corr)

crwOut <- crawlWrap(buffaloData,

theta = c(6.5,-.1),

fixPar = c(1,1,NA,NA),

err.model = list(x = ~ln.sd.x-1,

y = ~ln.sd.y-1,

rho = ~error.corr),

timeStep = 0.25, # predict at 15 min time steps

attempts = 10)

Now we’re ready to specify the recharge model. We’ll first fit the model to the best

predicted track from crawlWrap and then use this model fit to specify starting values

for a multiple imputation analysis:

spatialCovs <- list(W_intercept = W_ortho$svd1,

W_near_sabie = W_ortho$svd2,

dist2sabie = dist2sabie,

D = dist2sabie_scaled)

best predicted track data

hmmData <- prepData(crwOut,

spatialCovs = spatialCovs,

gradient = TRUE,

altCoordNames = "mu")

head(hmmData[,c("ID","time", "mu.x", "mu.y",

"W_intercept","W_near_sabie","dist2sabie",

"D.x","D.y")])

ID time mu.x mu.y W_intercept W_near_sabie dist2sabie D.x

142

1 1 313344.4 384560.8 -2770752 -0.0001873081 -0.003616337 1323.424 -1.228246

2 1 313344.7 384560.3 -2770751 -0.0001873081 -0.003616337 1323.424 -1.227881

3 1 313344.9 384559.8 -2770749 -0.0001873081 -0.003616337 1323.424 -1.227418

4 1 313345.2 384559.3 -2770747 -0.0001873081 -0.003616337 1323.424 -1.226851

5 1 313345.4 384559.1 -2770744 -0.0001873081 -0.003616337 1323.424 -1.226157

6 1 313345.7 384559.1 -2770742 -0.0001873081 -0.003616337 1323.424 -1.225450

D.y

1 0.3505877

2 0.3779253

3 0.3777812

4 0.3776649

5 0.3776060

6 0.3775941

nbStates <- 2

stateNames <- c("charged", "discharged")

dist <- list(mu = "rw_mvnorm2") # bivariate normal random walk

pseudo-design matrix for mu

DM <- list(mu=matrix(c("mu.x_tm1", 0, 0,0,0,0,

"mu.x_tm1", 0,"D.x",0,0,0,

0,"mu.y_tm1", 0,0,0,0,

0,"mu.y_tm1","D.y",0,0,0,

0, 0, 0,1,0,0,

0, 0, 0,0,1,0,

0, 0, 0,1,0,0,

0, 0, 0,0,1,0,

0, 0, 0,0,0,1,

0, 0, 0,0,0,1),

5*nbStates,

6,byrow=TRUE,

dimnames=list(c(paste0("mean.",

rep(c("x_","y_"),

each=nbStates),

1:nbStates),

paste0("sd.",

rep(c("x_","y_"),

each=nbStates),

1:nbStates),

paste0("corr.xy_",1:nbStates)),

c("x:x_tm1",

"y:y_tm1",

"xy:D",

143

"sd_1:(Intercept)",

"sd_2:(Intercept)",

"corr_12:(Intercept)"))))

starting values

Par0=list(mu=c(1, 1, 0, log(sqrt(85872.66)), log(sqrt(37753.53)), 0))

g0 <- 0 # recharge function at time 0

theta <- c(0,0,0) # recharge function parameters

specify recharge formula

note that theta formula requires an 'intercept' term

formula <- ~ recharge(g0 = ~1,

theta = ~W_intercept+W_near_sabie)

remove Markov property

betaRef <- c(1,1) # make state 1 the reference state

betaCons <- matrix(c(1,2),2,2) # 1 -> 1 = 2 -> 1 and 1 -> 2 = 2 -> 2

set fixed parameters

fixPar <- list(mu = c(Par0$mu[1:2],NA,NA,NA,Par0$mu[6]),

beta = matrix(c(0,-1,0,-1),2,2),

delta = c(0.5,0.5),

theta = c(0,NA,NA)) # fix extra 'intercept' term to zero

check recharge model specification

checkPar0(hmmData, nbStates = nbStates, dist = dist,

formula = formula, Par0 = Par0,

beta0 = list(beta = fixPar$beta,

g0 = g0,

theta = theta),

delta0 = fixPar$delta, fixPar = fixPar,

DM = DM, betaRef = betaRef, betaCons = betaCons,

stateNames = stateNames)

##

Regression coeffs for mu parameters:

x:x_tm1 y:y_tm1 xy:D sd_1:(Intercept) sd_2:(Intercept) corr_12:(Intercept)

[1,] 1 1 0 5.68031 5.269417 0

##

Regression coeffs for the transition probabilities (beta):

--

1 -> 2 2 -> 2

144

(Intercept) 0 0

recharge -1 -1

##

Initial distribution:

charged discharged

0.5 0.5

##

Initial recharge parameter (g0):

(Intercept)

0

##

Recharge function parameters (theta):

(Intercept) W_intercept W_near_sabie

0 0 0

fit to best predicted path

buffaloFit <- fitHMM(hmmData, nbStates = nbStates, dist = dist,

formula = formula, Par0 = Par0,

beta0 = list(g0=g0,

theta=theta),

fixPar = fixPar,

DM = DM, betaRef = betaRef, betaCons = betaCons,

stateNames = stateNames,

mvnCoords = "mu",

optMethod = "Nelder-Mead",

control = list(maxit=1000))

extract starting values

bestPar <- getPar(buffaloFit)

There are several things worth noting in the code above. Setting gradient=TRUE in

prepData results in the gradients for all covariates in spatialCovs to be calculated

and returned in both the easting (with “.x” suffix) and northing (“.y” suffix) direc-

tions. When specifying normal random walk models using a pseudo-design matrix,

we must include terms for the previous location in mean.x and mean.y (in this case

“mu.x tm1” and “mu.y tm1”, respectively), and we’ll typically fix the corresponding

coeffcients to 1 using fixPar. As in Hooten et al. (2019), we assume that the coef-

145

ficients for the gradient (D) are equal in the x- and y-directions (i.e., βµ
x = βµ

y ; this

constraint is specified in the third column of DM above) and that the state-dependent

sd.x and sd.y are equal. Similar to random effects models (section 3.9), note that

for recharge models beta0 must now be specified as a list (consisting of objects named

beta, g0, and/or theta). Hooten et al. (2019) assumed state transitions were non-

Markov (Eq. 14), and we can accomplish this by setting the reference states for the

t.p.m. working scale parameters to state 1 (i.e., betaRef <- c(1,1)) and setting the

columns within each row to be equal (i.e., betaCons <- matrix(c(1,2),2,2)). With

formula <- ~ recharge(g0 = ~1, theta = ~W_intercept+W_near_sabie), the re-

sulting state transition probability matrix at time t is:

Γ(t) =

[
1

(1+exp(β0+gtβ1))
exp(β0+gtβ1)

(1+exp(β0+gtβ1))

1
(1+exp(β0+gtβ1))

exp(β0+gtβ1)
(1+exp(β0+gtβ1))

]
,

where

gt = g0 +
t∑

j=1

θ0 +W interceptjθ1 +W near sabiejθ2.

Using fixPar, we fixed β0 = 0 and β1 = −1. Thus we have removed the Markov

property from the state-switching dynamics and ensured that the probability of being

in the “discharged” state (state 2) decreases as the recharge function (gt) increases as

in Eq. 14. We also fix θ0 = 0 because we do not need the required intercept term in this

particular case (an orthogonalized intercept term “W intercept” is already included as

a covariate). Because we have removed the Markov property from the state-switching

dynamics, the initial distribution has no effect on the likelihood; we therefore fixed it

(arbitrarily) to delta=c(0.5,0.5).

Now that we have our starting values (“bestPar”), let’s fit 28 imputations of the

position process using MIfitHMM:

buffaloFits <- MIfitHMM(crwOut, nSims=28,

spatialCovs = spatialCovs, gradient = TRUE,

mvnCoords="mu", altCoordNames = "mu",

nbStates=nbStates, dist=dist, formula=formula,

Par0=bestPar$Par, beta0=bestPar$beta,

fixPar=fixPar, DM=DM,

betaRef=betaRef, betaCons=betaCons,

stateNames = stateNames,

146

retryFits = 3, retrySD=list(mu=c(0,0,3,0,0,0),

g0=1,

theta=c(0,1,1)),

optMethod = "Nelder-Mead",

control = list(maxit=100000))

plot(buffaloFits,plotCI=TRUE,ask=FALSE)

plotSpatialCov(buffaloFits,dist2sabie)

plot estimates and CIs for Pr(discharged) at each time step

trProbs <- getTrProbs(buffaloFits, getCI=TRUE)

plot(trProbs$est[1,2,],type="l", ylim=c(0,1),

ylab="Pr(discharged)", xlab="time step",

col=c("#E69F00", "#56B4E9")[buffaloFits$miSum$Par$states])

arrows(1:dim(trProbs$est)[3],

trProbs$lower[1,2,],

1:dim(trProbs$est)[3],

trProbs$upper[1,2,],

length=0.025, angle=90, code=3,

col=c("#E69F00", "#56B4E9")[buffaloFits$miSum$Par$states],

lwd=1.3)

abline(h=0.5,lty=2)

As in Hooten et al. (2019), we found that the buffalo spent a majority of time steps in

the discharged state (73%, 95% CI: 70 − 76%) and thus needed to recharge regularly

near water resources. With estimated g0 = −0.27 (95% CI: −0.75 − 0.2), θ1 = 1.43

(95% CI: −0.62 − 3.47), and θ2 = 2.52 (95% CI: 1.46 − 3.57), the estimated recharge

function and transition probabilities (Figure 26) look very similar to those reported

by Hooten et al. (2019). However, Hooten et al. (2019) found some evidence that the

buffalo orients toward surface water when in the discharged state, but our discrete-

time formulation did not find evidence of such biased movement (βµ = 0.64, 95% CI:

−2.16 − 3.44). This difference could be attributable to several factors, including our

formulation being in discrete time (instead of continuous time), our use of a 2-stage

multiple imputation approach based on the CTCRW (instead of a single-stage model),

and the absence of prior distributions in our non-Bayesian model. Nevertheless, infer-

ences about recharge and state-switching dynamics are essentially the same between

our discrete-time formulation and the continuous-time model of Hooten et al. (2019).

147

Figure 26. African buffalo estimated states (top), recharge function (middle), and (non-
Markov) transition probability to the discharged state (bottom) at each time step (t).

148

3.12 Simulating constrained movement

In section 3.3 we briefly demonstrated how potential functions can be used within a

bivariate normal random walk to model loggerhead turtle movements relative to ocean

surface currents. Here we’ll show how this approach can be used in simData to simulate

movement data subject to barriers or other constraints (e.g. land for marine animals).

To accomplish this, we’ll rely on the forest raster that is automatically loaded with

momentuHMM. We’ll start by pretending that forest cells with values > 0 are “land”

and all others are “water”. Then we’ll create a new raster named boundary containing

the shortest distance from land to water using raster::distance:

boundary <- forest

boundary[boundary>0] <- NA

boundary <- raster::distance(boundary)

names(boundary) <- "boundary"

Now we’re ready to simulate our bivariate normal random walk model including the

gradients of the potential function surface in the x- and y-directions as covariates:

dist <- list(mu="rw_mvnorm2") # bivariate normal random walk

DM <- list(mu=list(mean.x=~mu.x_tm1+crw(mu.x_tm1,lag=1)+boundary.x,

mean.y=~mu.y_tm1+crw(mu.y_tm1,lag=1)+boundary.y,

sd.x=~1,

sd.y=~1,

corr.xy=~1))

specify parameters on working parameter scale

Par <- list(mu=c(1,0.75,-1500,1,0.75,-1500,log(sqrt(100000)),log(sqrt(100000)),0))

names(Par$mu) <- c("mu.x_tm1","crw(mu.x_tm1,lag=1)","boundary.x",

"mu.y_tm1","crw(mu.y_tm1,lag=1)","boundary.y",

"sd.x","sd.y","corr.xy")

simulate and plot

simBound <- simData(nbStates=1, obsPerAnimal = 10000, dist=dist, Par=Par,

DM=DM, spatialCovs=list(boundary = boundary),

gradient = TRUE,

mvnCoords="mu", initialPosition=c(25000,75000))

plot(simBound,dataNames=c("mu.x","mu.y"),ask=FALSE)

plot(boundary)

points(simBound$mu.x,simBound$mu.y,type="l")

149

Figure 27. Simulated track from a bivariate normal random walk model with movements
repulsed from “land” using a potential function.

150

Note that by setting gradient=TRUE in simData, the gradients are calculated and

returned for the boundary raster covariate. The model specified in DM is identical to

Eq. 13, except we have replaced the ocean surface current velocities with the gradients

for shortest distance to water in the x- and y-directions (boundary.x and boundary.y,

respectively). As we can see in Figure 27, the track is repelled from “land” and tends to

stay in the “water”. This strong attraction to water owes to the large negative values

for the coefficients corresponding to boundary.x and boundary.y.

3.13 Habitat-driven Langevin diffusion

In this example, we demonstrate how to fit a (single-state) continuous-time movement

model using fitCTHMM, although continuous-time models with > 1 state can of course

also be fitted in momentuHMM. We recreate the analysis of Michelot et al. (2019), where

they fit their habitat-driven Langevin diffusion to three Steller sea lion tracks collected

in the Aleutian Islands of Alaska, U.S.A. The Langevin model has some very nice

properties in that it is formulated in continuous time (so locations can be observed

irregularly) and the local (step-by-step) individual-level movement model scales up in

time and space to a (population-level) utilization distribution that is expressed as a

simple parametric function of the habitat covariates. This continuous-time model can

be approximated in momentuHMM as a (bivariate) normal random walk using an Euler

discretization scheme:

µt+1 = µt +
σ2∆t

2
∇ log π (µt | β) + ϵt+1, (15)

where ϵt+1 ∼ N (0, σ2∆tI), σ
2 is a speed parameter, ∆t is the interval between ob-

servation times t and t + 1, ∇ is the gradient operator, π (µt | β) is the stationary

(utilization) distribution evaluated at location µt, β is a vector of habitat selection

coefficients,

∇ log π (µt | β) =
K∑
k=1

βk∇xk (µt) , (16)

and xk (µt) is the value of the kth habitat covariate evaluated at µt. The resulting

utilization distribution has the standard form of a resource selection function (e.g.

151

Manly et al. 2010):

π (µ | β) =
exp

(∑K
k=1 xk (µ) βk

)
∫
M exp

(∑K
k=1 xk (z) βk

)
dz

. (17)

Let’s begin our analysis by first loading and preparing the data:

tracks <- read.csv("SSLpreddat.csv")

tracks$time <- as.POSIXct(tracks$time,format="%Y-%m-%d %H:%M:%S",tz="UTC")

tracks$time <- as.numeric(tracks$time)

tracks$time <- (tracks$time-min(tracks$time))/3600

head(tracks)

ID time x y

1 14809 0.000000 -1711308 471037.0

2 14809 0.350000 -1710020 471692.7

3 14809 1.383333 -1707746 472336.0

4 14809 2.116667 -1706217 472170.0

5 14809 2.200000 -1706076 472158.2

6 14809 3.133333 -1704885 473140.4

Note that a time element is now required (the default name is “time” but anything else

could be used via the Time.name argument in fitCTHMM). Here time has been rescaled

to hours that start at zero. Next we’ll load the habitat covariates, convert them to

kilometers, and crop them to the area of interest:

hbfull <- raster::brick("aleut_habitat.grd", values=TRUE)

covlist0 <- list(bathy = hbfull$bathy,

slope = hbfull$slope,

d2site = hbfull$d2site)

Convert to km

for(i in 1:length(covlist0)) {
extent(covlist0[[i]]) <- extent(c(xmin(covlist0[[i]]),

xmax(covlist0[[i]]),

ymin(covlist0[[i]]),

ymax(covlist0[[i]]))/1000)

projection(covlist0[[i]]) <- gsub("units=m", "units=km",

projection(covlist0[[i]]))

}

152

Figure 28. Steller sea lion tracks (top left), bathymetry (top right), slope (bottom left), and
distance to nearest haul-out or rookery site (bottom right).

ncov <- length(covlist0)

Resample covariates to the same grid

for(i in 2:ncov)

covlist0[[i]] <- resample(covlist0[[i]],covlist0[[1]])

convert to km

tracks$x <- tracks$x/1000

tracks$y <- tracks$y/1000

Crop covariates to area of interest

border <- 30

covlist0$bathy <- covlist0$bathy/1000

covlist0$d2site <- covlist0$d2site/1000

lim <- c(min(tracks$x)-border,max(tracks$x)+border,

min(tracks$y)-border,max(tracks$y)+border)

covlist0 <- lapply(covlist0, crop, y=extent(lim))

Next we’ll prepare our data for fitCTHMM and calculate the habitat covariate gradients

using bilinear interpolation (by setting gradient=TRUE):

153

langData <- prepData(tracks,coordNames = c("x","y"),

altCoordNames = "mu",

spatialCovs = covlist0,

gradient=TRUE)

head(langData)

ID step angle time mu.x mu.y bathy

1 14809 1.4453541 NA 0.000000 -1711.308 471.0370 -0.03940783

2 14809 2.3634792 -0.19522448 0.350000 -1710.020 471.6927 0.00000000

3 14809 1.5370667 -0.38379369 1.383333 -1707.746 472.3360 -0.03381421

4 14809 0.1416174 0.02466312 2.116667 -1706.217 472.1700 -0.02869409

5 14809 1.5439543 0.77297966 2.200000 -1706.076 472.1582 -0.02869409

6 14809 2.7146347 0.98030754 3.133333 -1704.885 473.1404 -0.24891857

bathy.x bathy.y slope slope.x slope.y d2site

1 -0.005050865 0.040296347 0.01372752 -4.396019e-05 -0.013719936 0.9641287

2 -0.018590510 0.007531541 0.00000000 1.162089e-02 -0.004707952 0.0000000

3 -0.011642304 0.023676612 0.01226024 -4.467521e-03 -0.005799564 5.4160643

4 -0.009069089 0.032293649 0.01064220 4.778864e-02 -0.029608231 6.0624549

5 -0.009277072 0.034778847 0.01064220 4.888458e-02 -0.042703727 6.0624549

6 -0.268401465 -0.022965041 0.21429528 2.044654e-01 -0.011589018 8.2434981

d2site.x d2site.y

1 0.6390380 -1.0765022

2 3.1586331 -1.2796516

3 0.9174547 0.3517309

4 0.5058383 -6.2632717

5 0.5174388 -6.4018863

6 8.3912835 0.1741563

We can see that the returned momentuHMMData object includes the gradients for the

habitat covariates (bathy, slope, and d2site) in both the easting (with “.x” suffix)

and northing (“.y” suffix) directions. This will allow us to include the gradients in the

Langevin model via the DM argument in fitCTHMM.

To specify the Langevin model of Michelot et al. (2019), we must use the langevin

special function and manually impose some constraints on the bivariate normal random

walk (“rw_mvnorm2”) parameters using the pseudo-design matrix:

154

DM <- list(mu=matrix(c("mu.x_tm1","langevin(bathy.x)","langevin(slope.x)",

"langevin(d2site.x)",0,0,

"mu.y_tm1","langevin(bathy.y)","langevin(slope.y)",

"langevin(d2site.y)",0,0,

0, 0, 0,

0,1,0,

0, 0, 0,

0,1,0,

0, 0, 0,

0,0,1),

nrow=5,byrow=TRUE,

dimnames = list(c("mean.x","mean.y",

"sd.x","sd.y","corr.xy"),

c("mean:mu_tm1","bathy","slope","d2site",

"sd:(Intercept)","corr.xy:(Intercept)"))))

DM$mu

mean:mu_tm1 bathy slope

mean.x "mu.x_tm1" "langevin(bathy.x)" "langevin(slope.x)"

mean.y "mu.y_tm1" "langevin(bathy.y)" "langevin(slope.y)"

sd.x "0" "0" "0"

sd.y "0" "0" "0"

corr.xy "0" "0" "0"

d2site sd:(Intercept) corr.xy:(Intercept)

mean.x "langevin(d2site.x)" "0" "0"

mean.y "langevin(d2site.y)" "0" "0"

sd.x "0" "1" "0"

sd.y "0" "1" "0"

corr.xy "0" "0" "1"

There are several things to unpack here. The first column of the design matrix is for the

previous location (as in section 3.11) and the langevin special function in columns 2–4

identifies the habitat selection coefficients of the model (and their corresponding habitat

covariate gradients). Note that the “.x” and “.y” suffixes correspond to the rows for

the means in the easting (“mean.x”) and northing (“mean.y”) directions. Lastly, the

Langevin model of Michelot et al. (2019) assumes the speeds in the easting and northing

directions are identical and independent (Eq. 15), so sd.x and sd.y are constrained to

be the same in column 5. We will use fixPar to fix the correlation (corr.xy) to zero

when fitting the model with fitCTHMM. Now we’re ready to fit the model:

155

fitLangevin <- fitCTHMM(langData,

nbStates=1,

dist=list(mu="rw_mvnorm2"),

DM=DM,

Par0=list(mu=c(1,0,0,0,2.5,0)),

mvnCoords = "mu",

fixPar=list(mu=c(1,rep(NA,3),NA,0)))

===

Fitting continuous-time HMM with 1 state and 1 data stream

mu ~ rw mvnorm2(mean.x: custom, mean.y: custom, sd.x: custom, sd.y:

custom, corr.xy: custom)

##

Transition probability matrix formula: ~1

##

Initial distribution formula: ~1

===

DONE

fitLangevin

Value of the maximum log-likelihood: -15137.32

##

##

Regression coeffs for mu parameters:

mean:mu_tm1 bathy slope d2site sd:(Intercept)

[1,] 1 0.1344924 0.07609383 -0.02060422 1.257144

corr.xy:(Intercept)

[1,] 0

##

mu parameters (based on mean covariate values):

state 1

mean.x -1750.234870

mean.y 525.966177

sd.x 3.515367

sd.y 3.515367

corr.xy 0.000000

156

fitLangevin$CIbeta$mu

$est

mean:mu_tm1 bathy slope d2site sd:(Intercept)

[1,] 1 0.1344924 0.07609383 -0.02060422 1.257144

corr.xy:(Intercept)

[1,] 0

##

$se

mean:mu_tm1 bathy slope d2site sd:(Intercept)

[1,] 0 0.07046041 0.1273152 0.005160584 0.009679295

corr.xy:(Intercept)

[1,] 0

##

$lower

mean:mu_tm1 bathy slope d2site sd:(Intercept)

[1,] 1 -0.003607499 -0.1734394 -0.03071878 1.238173

corr.xy:(Intercept)

[1,] 0

##

$upper

mean:mu_tm1 bathy slope d2site sd:(Intercept)

[1,] 1 0.2725923 0.3256271 -0.01048966 1.276115

corr.xy:(Intercept)

[1,] 0

The log likelihood, parameter estimates, and standard errors are identical to those from

Michelot et al. (2019), although note the habitat covariates bathy and d2site are in

kilometers (instead of meters). We can now calculate the utilization distribution as a

simple function of the habitat covariates (Eq. 17):

calculate utilization distribution

logUD <- fitLangevin$CIbeta$mu$est[2]*covlist0$bathy +

fitLangevin$CIbeta$mu$est[3]*covlist0$slope +

fitLangevin$CIbeta$mu$est[4]*covlist0$d2site

normalize UD

UD <- exp(logUD)/sum(exp(values(logUD)))

UDmat <- data.frame(coordinates(UD),val=values(UD))

ggtheme <- theme(axis.title = element_text(size=10),

157

Figure 29. Estimated utilization distribution for three Steller sea lion tracks on the real
(left) and log (right) scale.

axis.text = element_text(size=10),

legend.title = element_text(size=12),

legend.text = element_text(size=10),

title = element_text(size=10))

Plot utilization distribution

p1 <- ggplot(UDmat,aes(x,y)) + geom_raster(aes(fill=val)) +

coord_equal() + scale_fill_viridis(name=expression(pi)) +

xlab("Easting (km)") + ylab("Northing (km)") + ggtheme +

geom_point(aes(x,y), data=tracks, size=0.5)

Plot log-utilization distribution

p2 <- ggplot(UDmat,aes(x,y)) + geom_raster(aes(fill=log(val))) +

coord_equal() + scale_fill_viridis(name=expression(log(pi))) +

xlab("Easting (km)") + ylab("Northing (km)") + ggtheme +

geom_point(aes(x,y), data=tracks, size=0.5)

p1 + p2 + plot_layout(1,2)

Finally, let’s simulate from the fitted model using simCTHMM:

initPos <- split(as.matrix(langData[!duplicated(langData$ID),

c("mu.x","mu.y")]),

unique(langData$ID))

simLangevin <- simCTHMM(model=fitLangevin,

spatialCovs=covlist0,

initialPosition = initPos)

158

p3 <- plotSpatialCov(simLangevin,logUD,return=TRUE)

p3 + scale_fill_viridis(name=expression(log(pi)))

For an application of a multistate version of this model using momentuHMM, see McClin-

tock & Lander (2024).

3.14 Custom plots

In models with covariates, the relationships between model parameters and covariates

can be visualized with the function plot. When the argument return is set to TRUE,

the function returns data frames that can be used to create custom plots. We expect

that this will be particularly helpful to users wanting to produce publication-quality

graphics. Here, we illustrate this feature in a simple example using the wild haggis

movement data from Michelot et al. (2016), and create a plot with ggplot2.

library(ggplot2)

theme_set(theme_bw())

Get haggis data from moveHMM

raw <- moveHMM::haggis_data

data <- prepData(data = raw, type = "UTM", covNames = "slope")

Fit 2-state model with quadratic effect of slope

Par0 <- list(step = c(1, 5, 1, 5), angle = c(pi, 0, 1, 3))

dists <- list(step = "gamma", angle = "vm")

mod <- fitHMM(data = data,

nbStates = 2,

dist = dists,

Par0 = Par0,

estAngleMean = list(angle = TRUE),

formula = ~ slope + I(slope ^ 2))

Get plotting data for transition probabilities

plot_data <- plot(mod,

plotCI = TRUE,

plotTracks = FALSE,

ask = FALSE,

return = TRUE)

tpm_data_list <- plot_data$estimates$beta$slope

159

Figure 30. Simulated Steller sea lion tracks from the fitted Langevin model.

160

Add transition probability name as column

tpm_data_list <- lapply(1:length(tpm_data_list), function(i)

cbind(tpm_data_list[[i]], names(tpm_data_list)[i]))

Combine into a single data frame for plotting

tpm_data <- do.call(rbind, tpm_data_list)

colnames(tpm_data)[6] <- "name"

Create plot of all transition probabilities

ggplot(tpm_data, aes(slope, est)) +

geom_ribbon(aes(ymin = lci, ymax = uci), alpha = 0.2) +

geom_line() +

facet_wrap("name", nrow = 2) +

ylim(c(0, 1)) +

labs(y = "transition probability")

2 −> 1 2 −> 2

1 −> 1 1 −> 2

0 10 20 30 40 0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

slope

tr
an

si
tio

n
pr

ob
ab

ili
ty

Figure 31. Custom plot for transition probabilities as functions of slope, in wild haggis
example.

4 Discussion

Here we have introduced version 2.0.0 of the R package momentuHMM and demonstrated

some of its capabilities for conducting multivariate HMM analyses with animal loca-

tion, auxiliary biotelemetry, and environmental data. The package allows for fitting

161

(and simulating from) a suite of biased and correlated random walk movement pro-

cess models (e.g. McClintock et al. 2012), can be used for an unlimited number of

data streams and latent behavior states, includes multiple imputation methods to ac-

count for measurement error, temporal irregularity, and other forms of missing data

that would otherwise be prohibitive to maximum likelihood analysis, and integrates

seamlessly with rasters to facilitate spatio-temporal covariate modelling. Because the

package incorporates biased random walks, it can also be used to implement group

dynamic models (e.g. Langrock et al. 2014). The package therefore greatly expands on

available software and facilitates the incorporation of more ecological and behavioral

realism for hypothesis-driven analyses of animal movement that account for many of

the challenges commonly associated with telemetry data. While many of the features

of momentuHMM were motivated by animal movement data, we note that the package

is not limited to location data and can be used for analyzing any type of data that is

amenable to (multivariate) HMMs.

Model fitting in momentuHMM is relatively fast because the forward algorithm (Eq.

1) is coded in C++. Because multiple imputations are completely parallelizable, with

sufficient processing power computation times for analyses that account for measure-

ment error, temporal irregularity, or other forms of missing data need not be longer

than that required to fit a single HMM. However, computation times will necessarily be

longer as the number of states and/or parameters increase. For example, momentuHMM

required about 1 hr to fit a single HMM with N = 6 states, seven data streams, and

T = 7414 time steps (McClintock 2017).

As in any maximum likelihood analysis based on numerical optimization, compu-

tation times will also depend on the starting values (Par0 and beta0). Specifying

“good” starting values is arguably the most challenging aspect of model fitting in

momentuHMM, particularly for the working scale coefficients when using covariates. The

getPar, getPar0, getParDM, and checkPar0 functions are designed to help with the

specification of starting values, and the retryFits argument in crawlWrap, fitHMM,

and MIfitHMM will re-optimize based on random perturbations of the parameters to help

explore the likelihood surface and diagnose convergence to local maxima. Optimization

for the circular-linear regression link function (tan(mean/2); see Table 2) in particular

can be prone to local minima, so users are encouraged to explore a range of starting

values when fitting these models.

162

While momentuHMM includes functions for drawing realizations of the position pro-

cess based on the CTCRW model of Johnson et al. (2008), this is but one of many

methods for performing the first stage of multiple imputation. Realizations of the po-

sition process from any movement model that accounts for measurement error and/or

temporal irregularity (e.g. Calabrese et al. 2016; Gurarie et al. 2017) could be passed to

MIfitHMM for HMM-type analyses in the second stage. Multiple imputation methods

also need not be limited to these telemetry error scenarios. For example, conventional

missing data could also be imputed using standard techniques (Rubin & Schenker 1986),

thereby allowing the investigation of non-random mechanisms for missingness that can

be problematic if left unaccounted for in HMMs.

There remain many potential avenues for refining and extending the capabilities of

momentuHMM. Computation times could likely be improved by further optimizing the

R and C++ code for speed. Notable extensions include hidden semi-Markov models

and random effects on data stream probability distribution parameters (Zucchini et al.

2016). We would also like to incorporate additional parameters for change-point thresh-

olds and the locations of activity centers instead of requiring that they be pre-specified

(and potentially compared using AIC or other model selection criteria) as in grey seal

example. Lastly, it is relatively straightforward to add additional probability distribu-

tions, and we are pleased to do so upon request. Practitioners interested in additional

features for momentuHMM are encouraged to contact the authors.

Acknowledgments

We are grateful to R. Scott, B. Godley, M. Godfrey, J. Sudre, and North Carolina

Aquariums for providing the data used in our turtle example. We are also grateful to

the many authors who made their data publicly available for use in our examples (Wall

et al. 2014; Pirotta et al. 2018; Isojunno et al. 2017; Leos-Barajas et al. 2017; Adam

et al. 2019). The findings and conclusions in this vignette are those of the author(s)

and do not necessarily represent the views of the National Marine Fisheries Service,

NOAA. Any use of trade, product, or firm names does not imply an endorsement by

the US Government.

163

References

Adam, T., Griffiths, C.A., Leos-Barajas, V., Meese, E.N., Lowe, C.G., Blackwell, P.G.,

Righton, D. & Langrock, R. (2019) Joint modelling of multi-scale animal movement

data using hierarchical hidden markov models. Methods in Ecology and Evolution.

Beyer, H.L., Morales, J.M., Murray, D. & Fortin, M.J. (2013) The effectiveness of

Bayesian state-space models for estimating behavioural states from movement paths.

Methods in Ecology and Evolution, 4, 433–441.

Blackwell, P.G., Niu, M., Lambert, M.S. & LaPoint, S.D. (2016) Exact bayesian infer-

ence for animal movement in continuous time. Methods in Ecology and Evolution, 7,

184–195.

Bladt, M. & Sørensen, M. (2005) Statistical inference for discretely observed Markov

jump processes. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 67, 395–410.

Brillinger, D.R., Preisler, H.K., Ager, A.A. & Kie, J. (2012) The use of potential

functions in modelling animal movement. Selected Works of David Brillinger, pp.

385–409. Springer.

Burnham, K.P. & White, G.C. (2002) Evaluation of some random effects methodology

applicable to bird ringing data. Journal of Applied Statistics, 29, 245–264.

Calabrese, J.M., Fleming, C.H. & Gurarie, E. (2016) ctmm: an R package for analyzing

animal relocation data as a continuous-time stochastic process. Methods in Ecology

and Evolution, 7, 1124–1132.

Cornelissen, G. (2014) Cosinor-based rhythmometry. Theoretical Biology and Medical

Modelling, 11, 16.

Costa, D.P., Robinson, P.W., Arnould, J.P., Harrison, A.L., Simmons, S.E., Hassrick,

J.L., Hoskins, A.J., Kirkman, S.P., Oosthuizen, H., Villegas-Amtmann, S. et al.

(2010) Accuracy of argos locations of pinnipeds at-sea estimated using fastloc gps.

PloS one, 5, e8677.

164

DeRuiter, S.L., Langrock, R., Skirbutas, T., Goldbogen, J.A., Calambokidis, J., Fried-

laender, A.S. & Southall, B.L. (2017) A multivariate mixed hidden Markov model to

analyze blue whale diving behaviour during controlled sound exposures. The Annals

of Applied Statistics, 11, 362–392.

Gilbert, P. & Varadhan, R. (2016) numDeriv: Accurate Numerical Derivatives. R

package version 2016.8-1.

Glennie, R., Adam, T., Leos-Barajas, V., Michelot, T., Photopoulou, T. & McClintock,

B.T. (2021) Hidden Markov models: Pitfalls and opportunities in ecology. Methods

in Ecology and Evolution.

Glur, C. (2018) data.tree: General Purpose Hierarchical Data Structure. R package

version 0.7.8.

Gurarie, E., Fleming, C.H., Fagan, W.F., Laidre, K.L., Hernández-Pliego, J. &

Ovaskainen, O. (2017) Correlated velocity models as a fundamental unit of animal

movement: synthesis and applications. Movement Ecology, 5, 13.

Hijmans, R.J. (2016a) geosphere: Spherical Trigonometry. R package version 1.5-5.

Hijmans, R.J. (2016b) raster: Geographic Data Analysis and Modeling. R package

version 2.5-8.

Hooten, M.B., Johnson, D.S., McClintock, B.T. & Morales, J.M. (2017) Animal Move-

ment: Statistical Models for Telemetry Data. CRC Press.

Hooten, M.B., Scharf, H.R. & Morales, J.M. (2019) Running on empty: recharge dy-

namics from animal movement data. Ecology letters, 22, 377–389.

Isojunno, S., Sadykova, D., DeRuiter, S., CurÃ©, C., Visser, F., Thomas, L., Miller,

P.J.O. & Harris, C.M. (2017) Individual, ecological, and anthropogenic influences on

activity budgets of long-finned pilot whales. Ecosphere, 8, e02044.

Jackson, C. (2011) Multi-state models for panel data: the msm package for R. Journal

of Statistical Software, 38, 1–28.

Johnson, D.S. (2017) crawl: Fit Continuous-Time Correlated Random Walk Models to

Animal Movement Data. R package version 2.1.1.

165

Johnson, D.S., London, J.M., Lea, M.A. & Durban, J.W. (2008) Continuous-time cor-

related random walk model for animal telemetry data. Ecology, 89, 1208–1215.

Jonsen, I.D., Flemming, J.M. & Myers, R.A. (2005) Robust state–space modeling of

animal movement data. Ecology, 86, 2874–2880.

Langrock, R., Hopcraft, G., Blackwell, P., Goodall, V., King, R., Niu, M., Patterson,

T., Pedersen, M., Skarin, A. & Schick, R. (2014) Modelling group dynamic animal

movement. Methods in Ecology and Evolution, 5, 190–199.

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. & Morales, J.M.

(2012) Flexible and practical modeling of animal telemetry data: hidden Markov

models and extensions. Ecology, 93, 2336–2342.

Leos-Barajas, V., Gangloff, E.J., Adam, T., Langrock, R., Van Beest, F.M., Nabe-

Nielsen, J. & Morales, J.M. (2017) Multi-scale modeling of animal movement and

general behavior data using hidden markov models with hierarchical structures. Jour-

nal of Agricultural, Biological and Environmental Statistics, 22, 232–248.

Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W. (2010) Resource

selection by animals, 2nd Edition. Kluwer Academic Publishers, Dordrecht, The

Netherlands.

McClintock, B.T. (2017) Incorporating telemetry error into hidden markov models of

animal movement using multiple imputation. Journal of Agricultural, Biological, and

Environmental Statistics, 22, 249–269.

McClintock, B.T. (2021) Worth the effort? a practical examination of random effects in

hidden markov models for animal telemetry data. Methods in Ecology and Evolution,

12, 1475–1497.

McClintock, B.T., Johnson, D.S., Hooten, M.B., Ver Hoef, J.M. & Morales, J.M. (2014)

When to be discrete: the importance of time formulation in understanding animal

movement. Movement Ecology, 2, 21.

McClintock, B.T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B.J. &

Morales, J.M. (2012) A general discrete-time modeling framework for animal move-

ment using multistate random walks. Ecological Monographs, 82, 335–349.

166

McClintock, B.T. & Lander, M.E. (2024) A multistate Langevin diffusion for inferring

behavior-specific habitat selection and utilization distributions. Ecology, 105, e4186.

McClintock, B.T., London, J.M., Cameron, M.F. & Boveng, P.L. (2017) Bridging the

gaps in animal movement: hidden behaviors and ecological relationships revealed by

integrated data streams. Ecosphere, 8, e01751.

McClintock, B.T. & Michelot, T. (2018) momentuHMM: R package for generalized

hidden Markov models of animal movement. Methods in Ecology and Evolution, 9,

1518–1530.

McClintock, B.T., Russell, D.J., Matthiopoulos, J. & King, R. (2013) Combining indi-

vidual animal movement and ancillary biotelemetry data to investigate population-

level activity budgets. Ecology, 94, 838–849.

McKellar, A.E., Langrock, R., Walters, J.R. & Kesler, D.C. (2014) Using mixed hid-

den Markov models to examine behavioral states in a cooperatively breeding bird.

Behavioral Ecology, 26, 148–157.

Michelot, T., Gloaguen, P., Blackwell, P.G. & Étienne, M.P. (2019) The Langevin diffu-

sion as a continuous-time model of animal movement and habitat selection. Methods

in Ecology and Evolution, 10, 1894–1907.

Michelot, T., Langrock, R., Bestley, S., Jonsen, I.D., Photopoulou, T. & Patterson, T.A.

(2017) Estimation and simulation of foraging trips in land-based marine predators.

Ecology, 98, 1932–1944.

Michelot, T., Langrock, R. & Patterson, T.A. (2016) moveHMM: An R package for the

statistical modelling of animal movement data using hidden Markov models. Methods

in Ecology and Evolution, 7, 1308–1315.

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E. & Fryxell, J.M. (2004) Extract-

ing more out of relocation data: building movement models as mixtures of random

walks. Ecology, 85, 2436–2445.

Pirotta, E., Edwards, E.W.J., New, L. & Thompson, P.M. (2018) Central place foragers

and moving stimuli: A hidden-state model to discriminate the processes affecting

movement. Journal of Animal Ecology, 87, 1116–1125.

167

R Core Team (2017) R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rivest, L.P., Duchesne, T., Nicosia, A. & Fortin, D. (2016) A general angular regression

model for the analysis of data on animal movement in ecology. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 65, 445–463.

Rubin, D.B. & Schenker, N. (1986) Multiple imputation for interval estimation from

simple random samples with ignorable nonresponse. Journal of the American Statis-

tical Association, 81, 366–374.

Sarda-Espinosa, A. (2017) dtwclust: Time Series Clustering Along with Optimizations

for the Dynamic Time Warping Distance. R package version 3.1.2.

Towner, A.V., Leos-Barajas, V., Langrock, R., Schick, R.S., Smale, M.J., Kaschke, T.,

Jewell, O.J.D. & Papastamatiou, Y.P. (2016) Sex-specific and individual preferences

for hunting strategies in white sharks. Functional Ecology, 30, 1397–1407.

Wall, J., Wittemyer, G., LeMay, V., Douglas-Hamilton, I. & Klinkenberg, B. (2014)

Elliptical time-density model to estimate wildlife utilization distributions. Methods

in Ecology and Evolution, 5, 780–790.

Whoriskey, K., Auger-Méthé, M., Albertsen, C.M., Whoriskey, F.G., Binder, T.R.,

Krueger, C.C. & Mills Flemming, J. (2017) A hidden markov movement model for

rapidly identifying behavioral states from animal tracks. Ecology and Evolution, 7,

2112–2121.

Zucchini, W., MacDonald, I.L. & Langrock, R. (2016) Hidden Markov Models for Time

Series: An Introduction Using R. CRC Press.

168

	Introduction
	momentuHMM overview
	Data preparation and visualization
	HMM specification and fitting
	Circular-circular regression model for the angle mean
	Individual-level random effects
	Discrete-valued random effects
	Continuous-valued random effects

	Hierarchical hidden Markov models
	Random walk probability distributions
	Recharge dynamics
	Multiple imputation
	Model visualization and diagnostics
	Simulation
	Continuous-time hidden Markov models

	Examples
	African elephant
	Northern fur seal
	Loggerhead turtle
	Grey seal
	Southern elephant seals
	Model 1: no covariates
	Model 2
	Model 3

	Group dynamic animal movement
	Harbour seals
	Northern fulmars
	Pilot whales
	Hierarchical HMMs
	Harbor porpoise
	Garter snakes
	Atlantic cod
	Horn shark

	African buffalo recharge dynamics
	Simulating constrained movement
	Habitat-driven Langevin diffusion
	Custom plots

	Discussion

